

Surface treatment using Polymer Lapping Technology

 Significant reduction of friction losses
 Creation of an oil retaining layer in the surface
 Alternative and/or improvement to coated surfaces
 NON TOXIC

009

Technology Innovation Award

SULLIVAN

FROST Ó

FriCSo overview

American - Israeli company: offices in Detroit & Haifa

- Experienced team
- Sales & Marketing activities in US, EU & Asia
- Under evaluation by over 40 major automotive & heavy industry corporations

Our Technologies

Nanolayer based surface treatment technology that significantly reduces friction between moving parts

Applicable for:

- Automotive engine and out of engine parts (e.g. cylinder liners, pistons, piston pins, rocker shafts, cam shafts, shock absorbers, etc.)
- Hydraulics
- Aerospace
- Marine
- Windmills
- Healthcare (artificial implants)

FriCSo Technologie

The activation of the surface, due to the polymer lapping, will take place in the first µm to nm on the surface. This means that the polymer lapping process is performed as the last mechanical treatment step (finishing)

Our Products & Surface Engineering Treatment (SET)

Polymer-based devices, utilizing existing in-line, mass production machines

Replacing the existing tools with FriCSo Polymer Devices

Using abrasive paste

Surface texturing is added in certain applications

Our CleanTech Solution

Reducing Fuel Consumption / *Reducing Emission*

CleanTech Solution

Meeting Environmental Regulation

banning the use of hazardous materials (e.g. chrome)

Surface Engineering Treatment (SET)

Application specific treatment

SET1 - Polymer lapping (One Stage Process)

By applying the FriCSo polymer lapping method, a nanometric organic "active" layer is formed which is chemically bonded into the metal surface of the treated part.

The unique characteristic of the organic layer is that it dramatically improves the oil retention characteristics of the treated surface while improving the surface topography of the part.

SET2 - Grooving + Polymer lapping (Two Stage Process)

Surface texturing is done by using diamond tip (plastic deformation) Texturing process is computer controlled. Surface texture depends on application.

AFTER texturing – AFTER Polymer-Lapping

10.0µm/cm 1.0mm/cm

Ver.

Hor.

0.456µm

Pa

SET3 - Dimples + Polymer lapping (Two Stage Process)

Technical Details of laser dimples:

Diameter: 30µ - 120µ

Depth: 1µ - 30µ

Covered area: 1% - 60% (2 different versions of texturing method)

Polymer-Lapping: After applying the laser Dimples it is essential to remove sharp edges by polymer lapping

Surface Geometry and Surface Topographie

2.4

Geometry BEFORE Polymer-Lapping

Topographie Regular Lapping

Topography regular lapping vs polymer lapping- AFM (Atomic Force Microscope)

Regular lapping 20 microns grid Micro roughness - +1 mmo

Regular lapping

Bearing Area Curve (BAC)

BAC BEFORE Polymer-Lapping

BAC AFTER Polymer-Lapping

FriCSo "Finger-Print" (XPS)

The carbon C1 signal of the polymer lapped sample (left) reveals a significant increase of polar C=O/COOH groups in the upper surface layers compared with C1s signal of the regular lapped steel sample (right)

FriCSo "Finger-Print" (optisch)

Polymer-Lapping devices for AD / ID

FriCSo polymer lapping is suitable for mass production machines.

Adaption to machines

In house Tests

Roller on Block
1 drop of oil
variable load
variable speed
seizure at µ=0.3

- Special testing machine for piston pins
 variable load
 variable speed
- variable speed
- Temp. up to 250°C

Tribological Investigation: Pin on Disc (COF)

Tribological Investigation: Pin on Disc (friction power)

Tribological Investigation : SOP (Shaft on Plate)

Shaft-on-Plate (ISO 7148/2)

Contact: Line, 9 mm Movement: Rotation Speed: 18,8 mm/s, (30rpm) Load: 30 N Duration: 50 hrs Sliding Distance: 3391,2m Room temperature Lubrication: 100µl parafinic Mineral oil without additives

Dr. Tillwich GmbH Werner Stehr

Tribological Investigation: SOP (Shaft on Plate) →Steel vs Steel → Investigation WEAR

Measurement of contact angle

Measurement of wetting angle between applied liquid (water/diomethan) and the surface.

The result shows that the wetting angles of the polymer lapped parts are smaller, which means improved wettability

	Serie Polymer gelär			 geläppt	
	Surface Energy [mN/m]	Wetting Angle Theta [°]	Surface Energy [mN/m]	Wetting Angle Theta [°]	
Water		99,3 ± 1,56		74,8 ± 1,9	
Diomethan		59,3 ± 4,47		55,7 ±1,42	
Dispers Part	28.98		31,07		
Polar Part	0,57		7,80		
Surface Energy	29,55 [mN/m]		38,87 [ı	mN/m]	

Application: Valve Stem (gooving + polymer lapping)

Running application in the US - motorsports

Application: Liners

Treatment of liners/full engine blocks - even "high performance surfaces" like Nicasil have been successfully treated Result : Increase in power output

Before FriCSo treatment

After FriCSo treatment

Application: Camshaft Significant reduction in friction-losses on camshaft

The camshaft is structured in on the main bearing and Polymer lapped afterwards. Results: up to 26% reduction in friction losses in actual working conditions

Application: Camshaft Significant reduction in friction-losses on camshaft

Application: Engine Test (Technion)

Base line - Standard honing

100	19 19 et 12 1		1111				
50.0mm							
ĸ	and the state of the						
				 	- month	- and the	- Marine Marine
			A PROPERTY				14
D.Dum/om					ott	2 ring	
2.0mm/cm	1100000				1 1 1		

FriCSo Treatment

1463	
0mm	1.
	1
/om	Inna

Application: Engine Test (Technion)

1. compression ring

After baseline

After test with polymer lapped engine block

Application: Engine Test (Technion)

Base line no Treatment - WEAR

FriCSo treatment - WEAR Option1

FriCSo treatment - WEAR Option2

Application: Engine Test (Technion) consumption (BSFC, [g/kwh])

Consumption John Deere

Overview various identified engine components + possible treatments

Tassenstößel / tappets treatment: lapping only

Ventile / valves treatment: valve stem / Ventilschaft 1)structure + lapping 2)lapping only

Kolben / piston no FriCSo treatment BUT LINERS treatment: 1)structure between TDC and BDC + lapping entire length 2)lapping only

Kolbenbolzen / pistón pin treatment: 1)structure in area of conrod⁶ + lapping entire length

2)Lapping only (preparation for coatings) Pleuel / conrod treatment: under evaluation (structuring of bearing) Nockenwelle / camshaft treatment: 1)main bearings 1a)structure + lapping 1b)lapping only

2)Camlobes/Nocken 2a)lapping only (difficult to treat ->impact of improvement very low)

Kurbelwelle / crankshaft treatment: 1)main bearings (grey) 1a)structure + lapping (depends on forces) 1b)lapping only

2)Crank bearings 2a)structure + lapping (depends on forces) 2b)lapping only

Hydraulic Application - Eliminating adhesion wear

Test Conditions:

-372 bar -2400 RPM -180°F -1,25 Mio. Testcycles

"actual treatment"

THANK YOU

Besuchen Sie uns auf unserem Stand

Halle: 7 Stand: 8078

FriCSo Germany

Simon Wright

- Tel.: +49-7451-624001
- Fax: +49-7451-624004
- Email: simon.wright@sw-team.de
- URL: www.fricso.com