

Presented by
Tim Blackmore
Sales Manager - Advanced Engineering Materials
Trelleborg CRP Limited

Tooling Block The Green Alternative Agenda.

- History
- Current Practices
- Trends & Initiatives
- Materials
- Potential savings
- Questions

Tooling Block The Green Alternative History.

- Patterns & moulds have been for many years, Wood, metal
 Syntactic, PU, wax, etc
- To consistently replicate parts to a design.
- Production methods include machining, casting and hand shaping
- Majority of everyday items are produced from moulds

Current Practices

Specification of the product.

- Component to be made
- Process
- Temperature range
- Cure Cycle
- Surface finish

Tooling Block The Green Alternative Current Practices

- Tooling materials are bought in sheet form
- Sheets or blocks are bonded together using compatible adhesives
- Machined
- Sealed

Tooling Block The Green Alternative Trends & Initiatives

- We are all being asked to reduce, reuse and recycle.
- European Unions end-of-life for Vehicles (95% by 2015)
- Governing bodies are suggesting limited modifications to aerodynamic packages.
- Manufacturers looking for cost savings.
- Manufacturers looking to become green natural fibers
- Majority of patterns sent to landfill.

Tooling Block The Green Alternative Polyurethanes Advantages

- Wide range of products available from 0.18 to 2.0 density
- Wide application options, styling, modeling, checking jigs
- Relatively cost effective compare to others
- Generally faster production techniques and shorter conditioning time.

Polyurethanes Disadvantages

- Lower temperature range than other materials
- Low chemical resistance
- Lower mechanical properties on the same density blocks of other materials
- High CTE values.

Epoxy Syntactic Advantages

- Better mechanical strength than PU boards
- Better chemical resistance than PU boards
- High temperature resistance than PU boards
- Low coefficient of thermal expansion
- Good surface finish

Epoxy Syntactic Disadvantages

- Limited density range of product
- Longer process and conditioning time than PU boards
- Relatively more expensive than PU boards

Tooling Block The Green Alternative Epoxy Syntactic Properties

Board Reference	TB320PS	TB560PS	TB620PS	TB650PS	TB1750PS
Application	Lightweight Pattern Core	Hand Carve Modelling	Machine Modelling	Fine Surface Modelling	Hammer Forming
Colour	Blue	Orange	Blue	Green	Tan
Density Kg/m³	320	560	620	650	1750
Shore Hardness ° D	- 5	55	69	69	95
Compressive Strength MPa	8.0	14.0	38.0	45.5	92.8
HDT °C	72	58	110	111	86
CTE X10 ⁻ 6° C	40.0	73.0	39.0	38.0	46.0
Filler	Glass	Talc	Glass	Glass	Chalk

Hydro Carbons Advantages

Can be used at elevated Temperatures

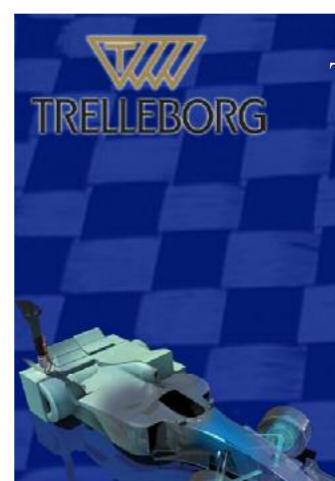
Good CTE value

Hydro Carbons
Disadvantages

- Market perception
- Base matrix pricing dependant on oil price & demand
- Availability
- Manufacturing temperature
- Limited fill options

Hydro Carbons Properties

Sample	PB162-085A	PB162-089A
	FB102-003A	FB102-009A
Tested by		
Vf of Al (%)	52%	52%
Density (Kg/m)	1906	1922
Tensile Strength (MPa)	35.2	39.5
Tensile Modulus (MPa)	11259	11022
Flexural Strength (MPa)	53.1	56.5
Flexural Modulus (MPa)	9542	9342
Uniaxial Compressive Strength (MPa)	92.4	97.2
Uniaxial Compressive Modulus (MPa)	3800	3739
HDT (°C)	125	141
Tg (°C)	129.1	146.38
CTE (mm/mm °C)	41.56	42.22
Shore D Hardness (°D)	91	93
Specific Heat Capacity (J/g°C)	0.75	0.75
Izod un-notched (kJ/m2)	7.01	7.91
Izod notched (kJ/m2)	1.89	1.98


Thermoplastics

Advantages

- High Service Temperature
- Excellent Machinability / surface finish
- No Dust or Odour
- Minimal residual Stress Larger block sizes
- Excellent chemical resistance
- Recyclability

Thermoplastics Disadvantages

- Currently cost
- Availability
- Market perception
- Difficult to bond / repair

Tooling Block The Green Alternative Thermoplastics.

Property	Alu-powder	Unit	Standard
Density	2.01	g/cm³	ASTM C128
Hardness	87	Shore D	ISO 868
Tensile Strength	39	MPa	ASTM D638
Tensile Modulus	9.2	GPa	ASTM D638
% Elongation	1	%	ASTM D638
Compression Strength	110	MPa	ASTM D695
CTE (23°C to 80°C)	67	10 ⁻⁶ /K	ASTM E831
HDT (1.8 MPa)	214	°C	ASTM D648

Tooling Block The Green Alternative Thermoplastics.

Property	60vol% Dolomite	Unit	Standard
Density	2.25	g/cm ³	ASTM C128
Hardness	88	Shore D	ISO 868
Tensile Strength	20	MPa	ASTM D638
Tensile Modulus	17.6	GPa	ASTM D638
% Elongation	0.5	%	ASTM D638
Compression Strength	82	MPa	ASTM D695
CTE (23°C to 80°C)	37	10 ⁻⁶ /K	ASTM E831
HDT (1.8 MPa)	218	°C	ASTM D648

Recyclability
Themoplastics.

- Back to generic
- SMC, BMC, DMC
- Granulate to injection mould

Recyclability
The main issues

- Preservation of the environment
- Stop developing materials that last for an infinite time
- Carbon, Glass, Aramid, fiber reinforce plastics difficult to recycle
- The Energy consumed for production of materials

Recyclability
The main issues

- Automotive industry driving green composites
- Investigation to natural reinforcements
- Thermoplastic base matrices
- Polypropylene, polyolefin, polyamide etc being used in the packaging industry

ITS TIME TO LOOK FOR ALTERNATIVES

Potential Savings

- Machine time
- Cost of component part
- Energy
- Weight of vehicles or components
- Increase in component strength v's cost
- Healthier environment less CO2

Tooling Block The Green Alternative Questions

Thank you!

