

Local nonlinearity modelling requirements for vehicle dynamics simulation

This document is the property of SAMTECH S.A.

Samtech group

This document is the property of SAMTECH S.A.

SAMTECH experiences in Automotive

Challenges for vehicle dynamics simulation

Classical methodology

Classical methodology

- Local nonlinearity not taken into account in MBS
- Transient loads transformed in static loads for FEA

This document is the property of SAMTECH S.A. model

Original methodology of Samcef MECANO

- Finite element approach
- Implicit solver
- Cartesian coordinates (6 dof by nodes)
- Rotation vector theory
- Joints defined by kinematical constraints
- Augmented Lagrangian method

$$\begin{split} M\ddot{q} + B^T(k\lambda + p\,\Phi) &= g(q,\dot{q},t) \\ \Phi(q,t) &= 0 \end{split}$$

- Φ : constraint λ: Lagrangian multiplier p: penalty factor
- k: scaling factor

Vehicle dynamics context

□ Nowadays virtual prototyping plays greater role in vehicle design

MATLAB

SIMULINK

- □ Better accuracy needed to predict the vehicle performances based on CAE estimations and results
- □ Challenges faced for vehicle dynamics:
 - Local nonlinearity
 - Frequency domain coverage
 - Multi disciplinary

Data exchange between platforms

- MBS
- FFA
- **Control systems**
- Fatique program

This document is the property of SAMTECH S.A.

Vehicle dynamics applications

Model complexity

Nonlinearity: the coil spring

Linear spring: classical MBS

MBS approach:

□ Front and rear double wishbone suspensions

□ Front and rear antiroll bar

□ Joints:

- hinges
- bushing
- nonlinear springs
- nonlinear dampers

Nonlinear tyre model (Pacejka Magic Formula)

Rigid Multi Body Simulation allows:

Short calculation time

 Investigation of an important number of designs covering several input variables and their full range of interest

This document is the property of SAMTECH S.A.

SAMTECH

Nonlinear coil spring

- Coil springs have a nonlinear behaviour due to large displacements
- Transmitted forces display an hysteretic behaviour

A classical "MBS like" spring element cannot represent this bending effect resulting in an additional moment

This document is the property of SAMTECH S.A.

Page 13

SAMTECH

Nonlinear coil spring: innovative methodology

This document is the property of SAMTECH S.A.

Kinematics and compliance with meshed springs

Kinematics and compliance with elastomer

□ Elastomer introduce nonlinearity and hysteric behaviour

Camber change

Initial downwards motion

□ Same results available for toe

□ Lateral force at the upper spring mount

Page 16

Leaf spring suspension

Motion in FEA – Rigid vs Flexible vehicle with MECANO 🥣

Flexible approach

- Physical suspension compliance definitions:
 - FEA parts
 - nonlinear 3D bushings
 - elastomer

- Higher frequency contents
- Higher number of cycles for fatigue performance assessment

No need to re-measure the suspension if

- geometry changes (attachment point)
- part redesigned (new FEA model)
- fatigue can be integrated early in the design process

Page 18

SAMTECH

This document is the property of SAMTECH S.A.

Torsen differential (1/2)

Assumptions:

- Joints between Planet gears and housing modelled as hinges
- Planet gears and one thrust washer locked axially
- Contact SG/washer 3 and CPL/washer 4 neglected

15 bodies (10 rigid, 5 flexible washers)

□ Constraints :

- 8 gear elements
- 5 contact relations (4 hinges, 1 screw joint)

This document is the property of SAMTECH S.A.

SAMTECH

Torsen differential (2/2)

SAMCEF MECANO: optimising the whole system

□ From design/optimisation of each part separately...

- □ ... to the design/optimisation of the subsystem parts
- □ ... to the optimisation of the global system

□ Thanks to:

- Increase of nonlinearity range
- Increase of frequency range

Thank you for your attention Visit us at our stand 5135

This document is the property of SAMTECH S.A.