

Advanced Lightweight Composite Materials for Railway Interiors

November 2011

Dr. Richard Horn - Rail Market Manager

Composites can Reduce the Weight of Trains

- Use less fuel
- Reduce track wear and track costs
- Increase capacity
 - Exploit double-decker capacity within axle load constraints
 - Longer trains, more frequent trains without accelerating damage to the track

What is a Composite?

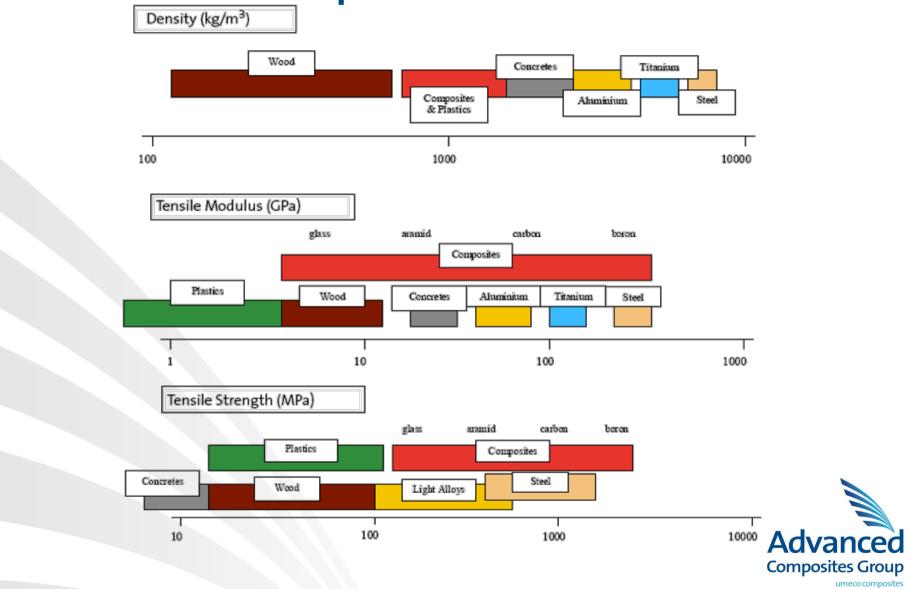
- Composite is a generic term for a material manufactured from a fibre reinforcement embedded in a matrix material which is usually a resin or polymer.
- Examples of a fibre reinforcement are:
 - Glass
 - Carbon
 - Synthetic and natural fibres
- Any format: woven, unidirectional, knit, etc.
- Examples of a resin are:
 - Ероху
 - Polyester
 - Phenolic

The Composite Advantage

Composites offer engineers a new freedom to design structures of optimum performance.

Composites have several advantages:

- High specific modulus and strength
- Low density
- Fibre orientation with the direction of principle stresses
- Good environmental and corrosion resistance
- Very low coefficient of thermal expansion
- Low thermal conductivity
- Improved vibration damping properties
- Good fatigue resistance
- Repairability of damaged structures
- Ability to manufacture complex shape



Metal vs. Composites

- Material Properties
 - Metal: Uniform
 - Composite: Directional
 - Loads
 - Metal: Uniformly distributed
 - Composite: Follow fibres
- Structure
 - Metal: Change only geometry
 - Composite: Tailor structure with materials and geometry

Comparison of Materials

Rail Interior Materials

Metals

- Aluminium
- Steel

Composites

- Glass
- Carbon

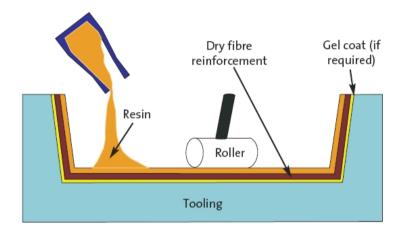
.

2700 kg/m³

7100 kg/m³

1660 kg/m³ 1450 kg/m³

GRP (glass reinforced plastics)

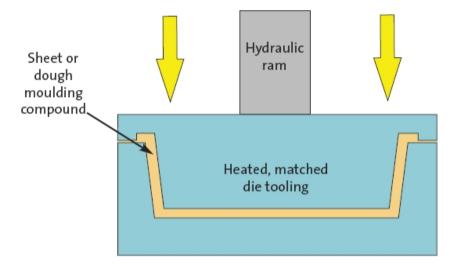

- Wet Lay up
- Press Moulding 1600 -1800 kg/m³

Advanced Composites (Prepregs)

• 1450-1660 kg/m³

GRP (Glass Reinforced Plastics) Wet Layup

Positives


- Low cost, simple technique
- Complex shapes easily moulded

Negatives

- Laminate quality operator dependent
- Poor part repeatability, quality control, health & safety issues

GRP (Glass Reinforced Plastics) Press Moulding

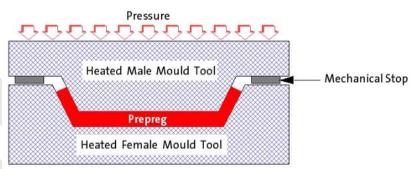
Positives

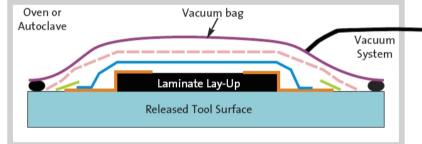
- Rapid manufacturing, low labour content
- Good repeatability
- Two moulded faces

Negatives

- Large production quantities required to amortise high tooling costs
- Poor mechanical performance
- Heavy parts

Advanced Composite (Prepreg)


- An 'advanced composite' usually refers to a structure where high performance composite materials and component geometry work in harmony to optimise performance
- A prepreg consists of a reinforced material <u>pre-impregnated</u> with a polymer or resin matrix in a controlled ratio
- Focus upon woven glass/phenolic prepreg for railway interiors



Advanced Composite Prepreg Processing

Prepreg Press Moulding

Prepreg Vacuum Processing

Positives

- Very high mechanical performance
- Labour saving and significant potential for automation

Negatives

- Increased raw material costs
- Increased processing costs

Mechanical Properties

	Wet Lay up		Press Moulding	Glass/Phenolic Prepreg	
Flexural Strength (MPa)					
Flexural Modulus (Gpa)					
Tensile Strength (MPa)					

Mechanical Properties

	Wet Lay up		Press Moulding	Glass/Pheno	lic Prepreg
Composition	20% Glass	30% Glass	30% glass , 40% filler	60% glass	60% carbon
Flexural Strength (MPa)					
Flexural Modulus (Gpa)					
Tensile Strength (MPa)					

Mechanical Properties

	Wet Lay up		Press Moulding	Glass/Phenolic Prepreg	
Composition	20% Glass	30% Glass	30% glass , 40% filler	60% glass	60% carbon
Flexural Strength (MPa)	115	200	140	500	640
Flexural Modulus (Gpa)	6.5	11	9	23	44
Tensile Strength (MPa)	45	101	58	291	513

Reduce weight by using glass/phenolic prepregs

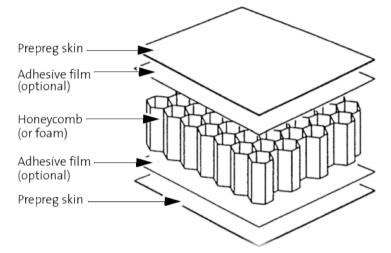
- Prepregs allows thinner structures to be made:
 - 2mm MTM82S-C glass/phenolic against
 - 4-6mm press moulding and wet layup
- Prepreg technology offers weight saving and better mechanical performance

Railway Interiors

- Seats and tables
- Standbacks
- Ceilings
- Floors
- Internal doors
- Walls
- Window frames
- Luggage racks

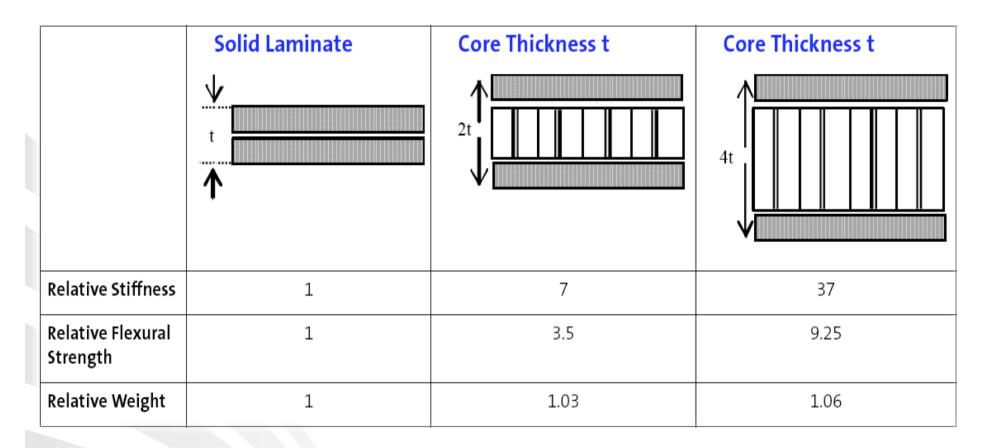
Cost Issues

Property	Wet Lay up	Press Moulding	Glass/Phenolic Prepreg		
Material Cost					
Labour Cost					
Tooling Cost					
Performance					
Part Weight					
Surface Quality					
Key: 1 = Worst, 5 = Best					


Cost Issues

Property	Wet Lay up	Press Moulding	Phenolic Glass Prepreg
Material Cost	4	5	2 to 3
Labour Cost	3	5	3 to 4
Tooling Cost	4	1	3
Performance	2 to 3	1	5
Part Weight	2 to 3	1	5
Surface Quality	3	5	3

Key: 1 = Worst, 5 = Best


Sandwich Panel Constructions

- Honeycomb Panels
 - Laminate phenolic/glass prepreg to a Nomex honeycomb core
- Foam Core Panels
 - Laminate phenolic/glass prepreg to a foam core

Sandwich Panel Performance

Examples on Stand 9245

Foam Sandwich Ceiling Foam Sandwich Seat Panel Advanced **Composites Group** umeco composites

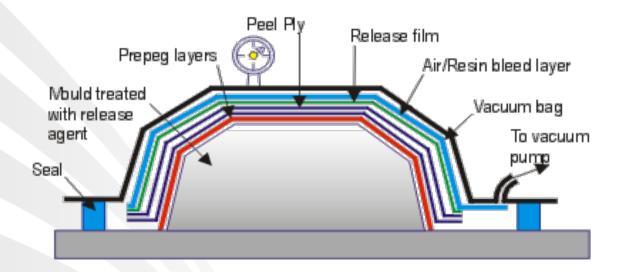
Glass/Phenolic Prepreg MTM®82S-C

- Suitable for autoclave/press moulding/vacuum bag •
- Broad cure range 80-180°C •
- Excellent Fire Smoke & Toxicity performance ۲
 - BS 6853 Rating Category 1a
 - Rating M1 F1 NF F 16-101
 - DIN 5510-2
- - Rating S4, SR2, ST2
- Impact performance

Case Study

- Bombardier Transportation UK won a contract to supply 30 Electrostar EMUs to the UK Train Operator National Express East Anglia
- Requirement for 960 standbacks
- Fire Performance to BS6853 Cat 1a
 was specified
- Ipeco Composites won the contract

• Ipeco Composites has a history in aircraft interiors



Material and Process Selection

- BS 6853 Cat 1a was specified
- MTM82S-C glass/phenolic prepreg was chosen with a 300gsm satin weave glass
- Processed by autoclave

- Layup prepreg on the mould
- Release film
- Air/resin bleed layer
- Vacuum bag
- Evacuate, cure in an autoclave

Acom.comm

Processing

Laid up

Finished Standback

Standback Installed

Gains

- Excellent surface finish
- Improved quality
- Improved dimensional tolerances
- On-time delivery
- No rework
- Reduced installation costs
- No rejects
- Compliant with BS6853 Cat 1a
- Reduced overall weight, 6.4kg against 10.5kg

In Conclusion

- If you want to take weight out of rail interiors then consider the prepreg route
- Suitable for all structures
- Can be more expensive than GRP
- Set against weight saving
- Set against installation costs
- Fire performance
- Impact performance
- Sandwich construction

Thank you Come and see us on Stand 9245

