


# Ian Goodman Managing Director LiFeBATT Ltd

# BMS: Does one size fit all?

A discussion of BMS requirements for Lithium based cells.





#### Agenda

- Company Profile
- BMS Introduction
- What are the core functions of a BMS?
- Active or Passive balancing?
- Battery Vehicle Interface.
- Vehicle ECU Battery Integration.
- Conclusions





## LiFeBATT Ltd

- Complete Battery System Supplier
- Partnership with LiFeTech Energy / Panjit Group Plc Taiwan.
- BMS and Vehicle Integration R & D Centre.
- Sales & Distribution for Europe
- ▶ ISO9001 Certification 5<sup>th</sup> March 2010.
- Over 20 years experience of Electric Vehicle and automotive applications.
- Customers: MIRA (Limo Green JLR), MicroCab, Ashwoods Automotive LCVPP & Robert Bosch.
  - 1.6 Million Km of product testing in last 12 months.



#### **BMS** Introduction

- Battery Management is the single biggest challenge facing the Electric Vehicle (EV) and Hybrid Electric Vehicle (HEV) market as it affects all aspects of vehicle performance.
- > All Lithium based cells require the same basic management.
- All vehicles have similar safety requirements, because they are all operate by US !





# What are the core functions of a BMS?

- Cell Level
  - Cell Voltage Monitoring
  - Cell Temperature Monitoring
  - Cell Balancing
- Pack Level
  - State of Charge
  - State of Health
  - Operating parameters





#### Active or Passive balancing?

- Passive Balancing
  - During charging, excess current is bypassed through balancing resistors and the discharged energy is dissipated as heat.
- Active Balancing
  - Direct transfer of excess energy from a fully charged cell to a less charged cell.

Most Efficient ? Most Cost Effective ? Technology Tipping Point? Active Passive 60+Ah cell (single serial string).



#### **Battery Vehicle Interface**

- CANbus 2.0B (or J1939), but what data is required and why?
- Driver Information
  - State of charge
  - State of health
- Drive Train Information
  - Max & Min Voltage
  - Max Regen and Discharge Currents
  - Battery Temperature





## Vehicle ECU Battery Integration

- What decisions will the ECU have to make?
  - Safety protocols, ignition inhibit?
    - Earth Leakage
    - AC Supply Connected for Charging
    - Contactor Weld Detect
    - High Pedal Inhibit
    - Emergency Stop
  - Power management based on SoC, SoH and Battery Temp





#### Conclusions

- Can one BMS fit all?
  - One BMS strategy can!
  - But you may need different hardware to cope with different chemistries.





#### Thank You

#### Ian Goodman

www.lifebatt.co.uk

