

HySYS: Fuel Cell Hybrid Vehicle System Component Development

Dr. Jörg Wind, Daimler Engine Expo, Stuttgart, May 18th 2011

HySYS - Fuel Cell Hybrid Vehicle System Component Development

FC Hybrid Vehicle System Component

Development

Project Facts

- **Coordinator**: Daimler AG
- □ Total budget: 22.7 M€
- **EC-Funding**: 11.2 M€
- Partners: 28 (17 Industry, 2 SMEs, Technology)
 4 Institutes, 5 Universities)
- Countries: 8 EC Member States and Switzerland
- **Duration**: 01.12.2005 30.11.2010

Project Goals

- Improvement of fuel cell system components for market readiness
- Improvement of electric drive train components for market readiness
- Optimisation of system architecture for low energy consumption, high performance, high durability and reliability
- Optimisation of energy management, enhanced FC-drive train efficiency
- Development of low cost components for mass production
- **Validation** of component and system performance in **FC Vehicles**

Regarded Components

- Low cost automotive electrical turbochargers for air supply with high efficiency and high dynamics
- Low cost **humidifiers** with high packaging density
- Low cost **hydrogen sensors** for automotive use
- Effective low cost hydrogen supply line
- High efficient, high power density **electric drive train**
- Low cost high power **Li-lon batteries**

Definition of Vehicle Requirements

Parameter	DAIMLER Validator (MB-Sprinter)	CRF Validator (FIAT Panda)
Motor Power (cont/Peak)	70/100 kW	40/75 kW
Fuel Cell Power	80 kW	60 kW (nominal)–75 kW
Gearbox	One gear ratio	One gear ratio
Batterie Lilon	30 – 50 kW, 2 kWh	Not foreseen
Weight empty/fully loaded	<= 2.7 t / 3.5 t	1.4 t / 1.7 t
Range at ½ load	> 300 km	250 km
Vmax	130 km/h @ grade 0%	140 km/h @ grade 0%
Acceleration	0-80km/h < 21 s 0-100 km/h < 37 s	0-50km/h < 7 s 0-100 km/h < 15 s
Climbing ability fully loaded Vmax at ½ load on 4%	35% N/A	23 % > 80 km/h

J. Wind, Daimler AG

Fuel Cell System Components #1

New air supply for FC system: Electrical turbo charger + Integrated air sensor (mass flow, pressure, temperature)

- ETC and IAS-sensors developed, delivered, successfully integrated and tested on component level, at the FC-system and in the demonstrator vehicle
- ETC as well as IAS performance meet the specified values and the FC-System requirements
- Achieved improvements:
 - □ Lower the weight ☑
 - Smaller sized packaging volume
 - Decrease noise
 - Improve efficiency
 - Reduced electric energy consumption

 $\mathbf{\nabla}$

 $\mathbf{\nabla}$

 \checkmark

Fuel Cell System Components #2

Humidification Cathode side (gas-to-gas humidifier)

- Development of porous hollow fibre membrane
 - A completely new type of micro-yarn reinforced hollow fibre membrane was developed
 - The production of this fibre includes
 - the weaving of a polyester yarn,
 - the simultaneous coating of the micro-web with a solution of the recipe
 - followed by the phase inversion in a non-solvent
- Advantages
 - Ultimate high mechanical strength
 - Very high water vapour permeability
 - Different packing density
- Packaging
 - Fibres were arranged in parallel, with optimized custom package geometry
 - Optimisation of pressure drop and mass transfer by constant flow

Fuel Cell System Components #3

Innovative hydrogen sensors

Principle of detection

Resistive sensors based on discontinuous palladium (Pd) nanostructures: Creation of new conduction paths through the layer, in the presence of H₂

Resistance level under clean air (base line) stable

- □ Large spread of the resistance levels: 800 kOhm to 2000 kOhm
- No cross-sensitivity to CO and NO₂ (automotive pollution gases)
- Influence of humidity on the base line and on the sensitivity Response times T90: at least 12 sec
- Recovery times: not relevant due to the fact that the sensors don't go back to their initial value
- \rightarrow Further work necessary

Hydrogen Metering Device

 Design based on NGI-valves
 -> reduced effort for development, testing and samples

	Robust	technology	and	design
--	--------	------------	-----	--------

	State of the Art	Objectives	Achievements
Functionality			
Level of integration	seperate current driver	current driver in ECU	current driver in ECU
Maturity level	industrial valves	automotive prototype	automotive prototype
mass productivity design	small series production	mass production	mass production
Specification			
Mass	2000 g	500 g	500 g *
Volume	1000 ml	500 ml	530 ml
Temperature	-1060 °C	-25 70 °C	-25 70 °C
Mass flow	0 2 g/s	0 2 g/s	03g/s
Inlet pressure	8 10 bar	8 10 bar	8 10 bar
Average Power Consumption	100 W	10 W	10 W
Dynamics	100 ms	2 ms	2 ms

J. Wind, Daimler AG

Electrical Motors (from WP4100)

- □ rated power: 45 kW_{mec}
- □ peak power: 75 kW_{mec}
- rated torque: 110 Nm
- max transient torque: 205 Nm
- base speed: 4000 rpm
- □ max operating speed: 12000 rpm
- mechanical overspeed: 14000 rpm

- 3 phase AC Permeance e-machine (synchronous reluctance with IPMs)
- liquid cooled
- integrated mechanical sensor
- Integrated interface to the proper coupling with the mechanical transmission

E-Drive Components # 2

Power Electronics (from WP4200)

- Modular Inverter / Converter System for different Fuel Cell Car Topologies has been successfully developed and tested
- Common cooling circuit for FC, electric traction drive and DC/DC converter up to 90°C can be used
- Integrated Low Voltage DC/DC Converter to supply 12V components
- Modular Design Concept Use of identical internal components means:
 - Iow development costs
 - Iow costs per piece (volume effect)
 - Iow qualification costs

High Voltage DC/DC Converter – technical data

- Input and output voltage range:120V to 430V
- DC-current: 180A continuous, 250A for 10s
- Maximum cooling water temperature: 90°C
- Maximum Power: 107.5kW

E-Drive Components # 3

Li ion battery system

- Li ion cells included in a module structure
- Active liquid cooling of the cells
- Cell supervising circuit with voltage and temperature measurement, cell balancing
- Battery Management System with SOC & SOH calculation
- Power box

Parameter	Value
Specific power (module level)	1,83 kW/kg (2s)
Specific energy (module level)	52 Wh/kg
Efficiency	95%
Life time	15 years

Fuel Cell System Comparison:

HySYS fuel cell system efficiency compared with fuel cell system efficiency curve from EUCAR WTW Study

Validator Vehicle: Mercedes Benz FC-Sprinter

Vehicle Integration – Daimler Validator: Packaging Concept

Validator Vehicle: FIAT Panda

Vehicle Integration – CRF Validator: Packaging Concept

Thank you very much for your attention

More information on:

http://www.hysys.eu