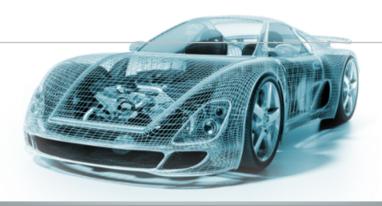


Solutions for Safety Critical Automotive Applications


Matthieu Reze

EMEA - Automotive Sensors Marketing

- 1 The market landscape
- 2 Introduction to Functional Safety
- 3 Microcontroller & Software for Chassis & Safety Applications
- 4 Sensor solutions for Chassis & Safety Applications
- 5 Conclusion

1.3 million people are killed on world roads every year or more than 3,500 people per day....

			**	
Country	USA	Germany	China	Japan
Population (million)	306	83	1,336	128
Car Park (million)	251	56	145	91
Death (people)	42,642	4,979	89,455	6,639
Death / 100k people Death / 100k cars	TRENDS IN ROAD TRAFFIC DEATHS H 19 19 10 11 11 11 11 11 11 11	6.0 9.0	6.7 61.6	5.2 7.3
Trends in Road TrafficDeaths	8 1 92 4 1378 1982 1996 1996 1996 1998 2982 2996	TRENDS IN ROAD TRAFFIC DEATHS IF IF IT IS TO THE TRAFFIC DEATHS IF IT IS TO THE TRAFFIC DEATHS	TRENDS IN ROAD TRAFFIC DEATHS 10	TRENDS IN ROAD TRAFFIC DEATHS 23 24 25 26 27 28 28 28 28 28 28 28 28 28 28 28 28 28

And in India, 105,725 killed; Russia, 33,308 killed; Brazil, 35,155 killed...

Source: http://www.who.int/violence_injury_prevention/road_safety_status/2009/en/

Electronic Market Growth Dynamics:

- 1. New systems are introduced in high end vehicles based on consumer demand for safety.
- 2. Government safety regulations are changed to mandate the new system.
- Increasing legislation for safety systems (ABS, ESP) is driving the Adoption of electronic braking, and safety systems in many regions.
- 4. ADAS, Radar and Camera systems expected to be next for mandate.

Network Effects in Chassis & Safety

Steering

Electric power steering
Active front steering
Steering Torque Sensors
High torque EPS

Driver Assistance

Front & rear radar
Multifunction Camera
Blindspot detection
Ultra-sonic park assist
Camera parking aid
MPE sensors
Adaptative Cruise Control
Lane Keeping assistant

Suspension

Semi active suspension Fully active suspension

Powertrain

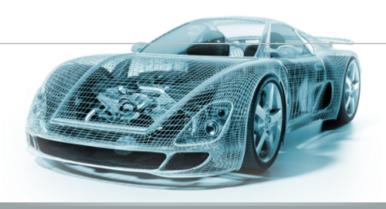
Traction control Regenerative Braking

Brake / Active Safety

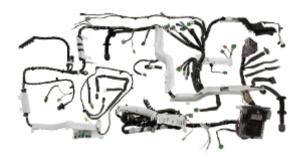
Anti-lock braking Vehicle stability control Electric parking brake Regenerative Braking

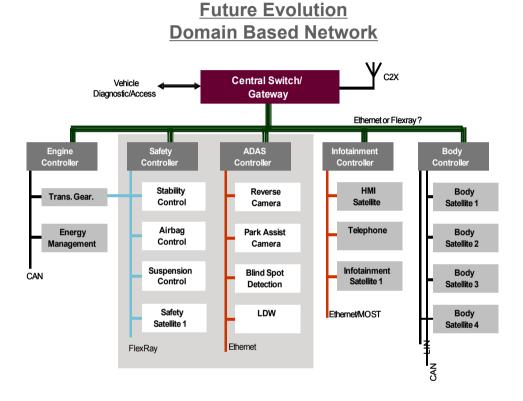
Airbag/ Passive Safety

Front airbag, Side airbag Seatbelt Pretensioner Pedestrian Protection


New: Safety controller

- -High Computing power required
- -Complex Software implemented
- -Functional Safety
- -High Bandwidth Network
- -Sensor Fusion
- Low power consumption

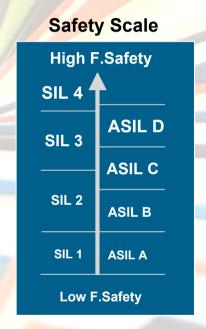

- 1 The market landscape
- 2 Introduction to Functional Safety
- 3 Microcontroller & Software for Chassis & Safety Applications
- 4 Sensor solutions for Chassis & Safety Applications
- 5 Conclusion



New trends in Vehicle Architecture

- ► Vehicle E/E Architecture are
 - Too complex
 - Too much power
 - Too many ECUs
 - Too many cables
 - Too many connectors
 - Too much weight
 - Too many too many...

Higher ECU integration and emergence of domain controller will create <u>new challenges</u> in terms of <u>functional safety</u> (ISO26262)

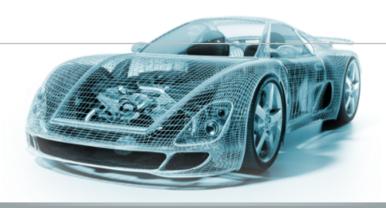

Functional Safety, what is that?

▶ Functional Safety Definition

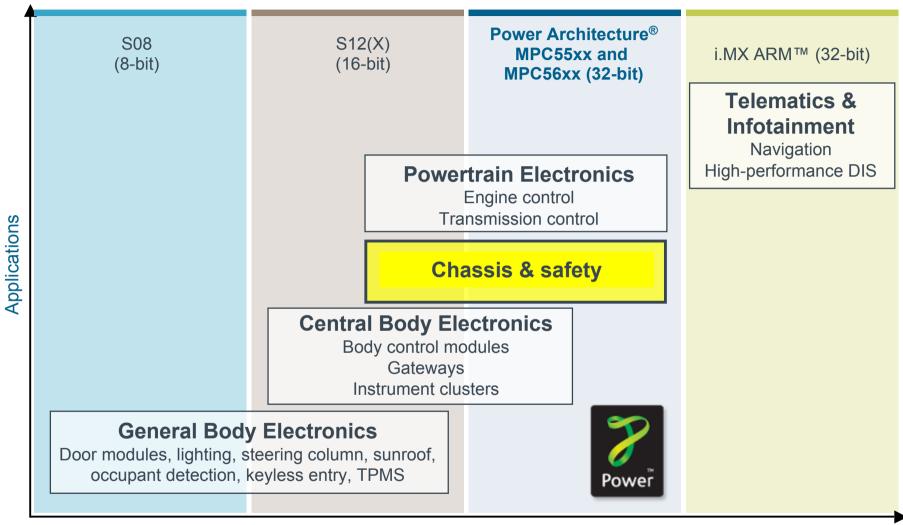
- Ability of a system to fullfil given functional requirements
 - Within a set of operation conditions
 - Within a given time period
 - Within known failure mode

► Two relevant safety standards

- · IEC 61508
 - Generic standard for functional safety of electronic systems
 - SIL levels (Safety Integrity Level) 1 to 4
- ISO 26262 (in preparation)
 - 'Derivate' of IEC 61508 for automotive applications
 - ASIL levels (Automotive SIL) A to B



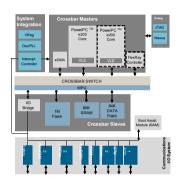
Safety standards are becoming the key enabler for the design of all new electronic application in the vehicle and associated semiconductor development



- 1 The market landscape
- 2 Introduction to Functional Safety
- 3 Microcontroller & Software for Chassis & Safety Applications
- 4 Sensor solutions for Chassis & Safety Applications
- 5 Conclusion

Freescale Automotive Cores

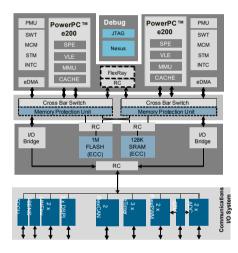
Performance/Features



A Scalable familly of 32-bit 90nm Microcontroller for Chassis & Safety Application

MPC560xP/T

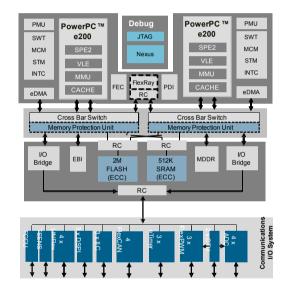
- e200z0 Single & Dual core
- Up to 64 MHz
- 192kB to 1MB Flash
- FlexCAN, LINFlex, FlexRay



Airbag Antilock Brake System Electric Power Steering Ultrasonic Park Assist

Suround camera (MPC5604X version with MJPEG and FEC)

MPC564xL


- · e200z4 Dual core. Dual Issue
- · Lockstep or decoupled mode
- Up to 120 MHz
- 384kB to 1MB Flash
- FlexCAN, LINFlex, FlexRay

Electric Power Steering
Electronic Stability Control
24 & 77GHz radar controller
Domain Controller

MPC567xK

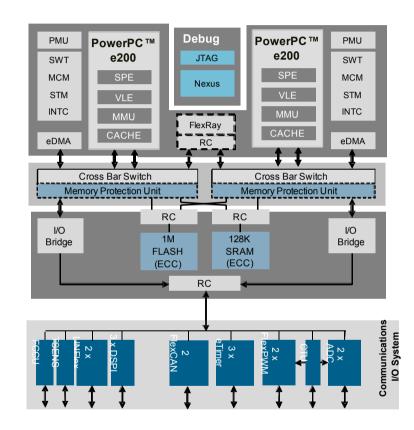
- e200z7 Dual core, Dual Issue
- Lockstep or decoupled mode
- Up to 200 MHz
- 1MB to 2MB Flash
- FlexCAN, LINFlex, FlexRay, Ethernet

Chassis Controller
Domain Controller
High Performance Radar / Camera

Performance scale

MCU Architectures for Safety Critical Applications

	Power	Power Power	Power Power	Power Power		
	Single Core	Asymmetric Cores	Lockstep Dual Core	Decoupled Dual Core	Detection of SW Errors	SW Effort
Single SW Instance	-	-	ASIL D	-	No	Low
Replicated SW Instances	ASIL A (Time redundancy)	Not common	Makes little sense	ASIL D	No	Medium
Diverse SW Instances	ASIL A-B (Time redundancy)	ASIL C-D	ASIL D (Time redundancy)	ASIL D	Yes	High
Core Perfomances	1x	1.2x	1.0x	1.5x		

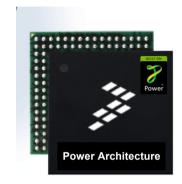


New Dual Core MCU for safety critical Applications

MPC5643L

- ► First dual-core, dual-issue controller available that can switch between lock-step mode and dual parallel mode to address functional safety and performance
- ▶ Duplication of all computational elements to address IEC61508/ISO26261 level applications
- ▶ More than 600 DMIPS performance from dual core, dual issue e200 running at 120 MHz

Proof Point: Effective cooperation on Functional Safety



Freescale Press Release, October 2007

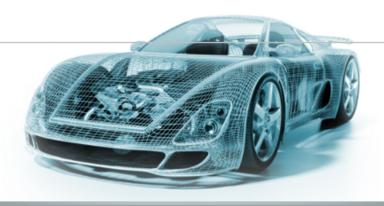
Freescale and Continental collaborate on multi-core 32-bit microcontroller for electronic braking systems [..]

The <u>SPACE</u> device integrates three e200 cores based on Power Architecture™ technology, making it the industry's first triple-core automotive MCU.

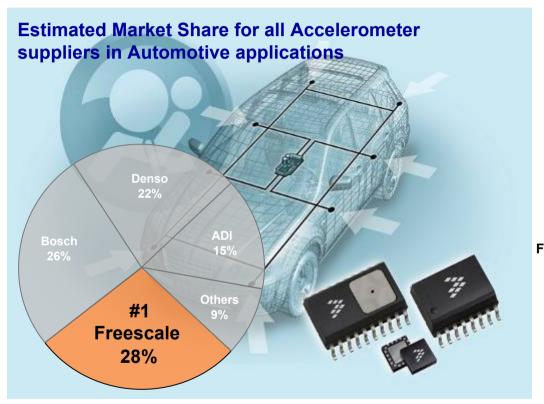
http://media.freescale.com/phoenix.zhtml?c=196520&p=irol-newsArticle&ID=1063162&highlight=

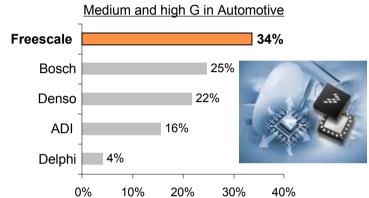
Continental Press Release, November 2009

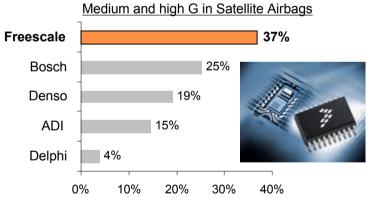
Continental has received a **safety certification according to the IEC 61508 SIL-3** standard for a chipset used as brake controller [..]


The chipset in question consists of a **SPACE** microcontroller and a PCU mixed-signal chip.

http://www.conti-online.com/generator/www/com/de/continental/presseportal/themen/pressemitteilungen/3 automotive group/chassis safety/press releases/pr 2009 11 03 sil3 zertifikat de.htm


- 1 The market landscape
- 2 Introduction to Functional Safety
- 3 Microcontroller & Software for Chassis & Safety Applications
- 4 Sensor solutions for Chassis & Safety Applications
- 5 Conclusion





Freescale, The undisputed leader in Automotive Accelerometer

Source: iSupply, Automotive MEMS H2 2009 Market Tracker

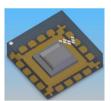
MMA6900Q Dual axis low g accelerometer

Thanks to:

- Its robust design
- Temperature stability
- Low noise
- Compact package
- Automotive qualification

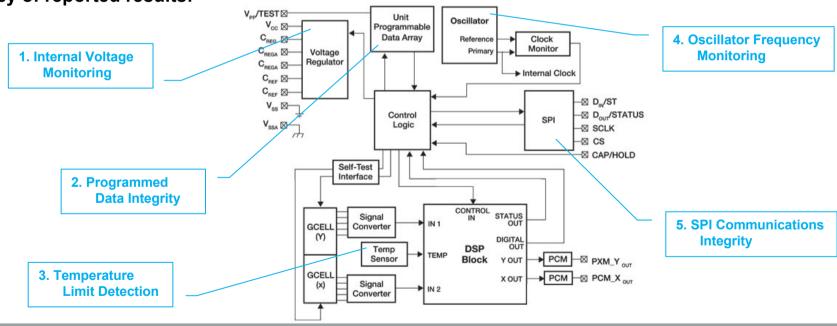
MMA6900Q is suitable for <u>safety critical</u> automotive applications such as **Electronic Stability Control (ESC)** and **Electronic Parking Brake (EPB)**.

It also detects accurately vehicle tilt like for car alarms. For industrial applications it can be used as inclinometers and low level motion detector (Low detection threshold of 8.6mg or >= 0.5°).



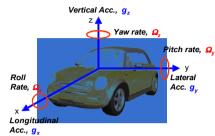
MMA6900Q Accuracy of Data: 5 Key Features

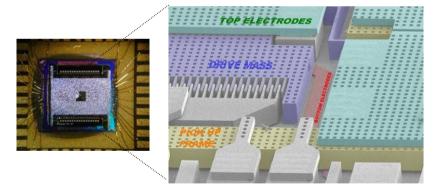
Dual XY axis Sensors with fully digital signal processing:


- Digital output (10 or 11 Bits)
- 3.3V or 5V Power Supply
- Bi-directional Self-test
- Programmability (Various LP/HP filters, ...)

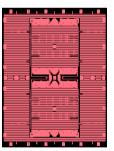
VSC Module QFN Package

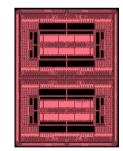
The following features and functions are incorporated into the MMA6900Q design to ensure accuracy of reported results:




Vehicle Stability Control: Angular Rate Sensors

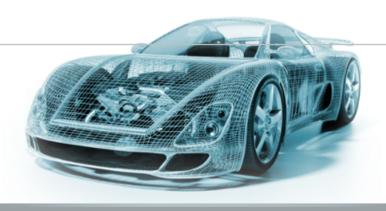
- Angular Rate with fully digital signal processing:
 - X-axis rate sensor: + 100°/s to 300 °/s
 - Z-axis rate sensor: + 100°/s to 300 °/s
 - Closed loop architecture
 - Digital Output (SPI) 16 bit format
 - 3.3V or 5V Power Supply
 - Continuous Function Monitoring




Car with and without VSC

Coriolis based double mass balanced design

X-Axis Gyro design



Z-Axis Gyro design

- 1 The market landscape
- 2 Introduction to Functional Safety
- 3 Microcontroller & Software for Chassis & Safety Applications
- 4 Sensor solutions for Chassis & Safety Applications
- 5 Conclusion

Freescale Automotive Investment for the Future

▶ Green Technologies

- Multi-core Power Architecture processors for nextgeneration powertrain (GDI, Diesel, HEV, EV)
- Intelligent power switching (IDC, E-Switch) and communication solutions to replace hydraulic systems
- Cost reduced system solutions for emerging markets

► Advanced Safety

- High-performance Power Architecture[™] solutions for active and passive safety fusion – Domain controllers
- 77 GHz RF solutions for radar
- Gyro and low-g sensors for vehicle dynamics

▶ Infotainment

- i.MX application processors for advanced multimedia
- Symphony audio DSPs for radio head units, external amplifiers and aftermarket audio solutions
- Cost reduced components for in car networking applications

Our common goals

Emissions Fatalities Defects

Electronic is imperative to balance increasing individual transportation and reducing fuel cost, emissions and casualties.

Consumer awareness, legislation and competitive differentiation join forces driving automotive electronics

