

22, 23, 24 JUNE 2010 MESSE STUTTGART | STUTTGART | GERMANY

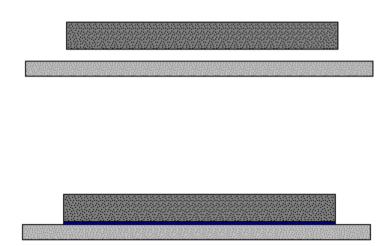
SINTERED METALLIC DISC BRAKE PADS FOR AUTOMOBILES

Babu Golla
Chief executive
Redson Engineers Pvt. Ltd.,
Hyderabad, INDIA

BABU GOLLA, B.Sc., A.M.Ae.S.I., M.Tech CL: +91 9848028019

Disc Brake Pads

TOYOTA COROLLA


TATA SUMO

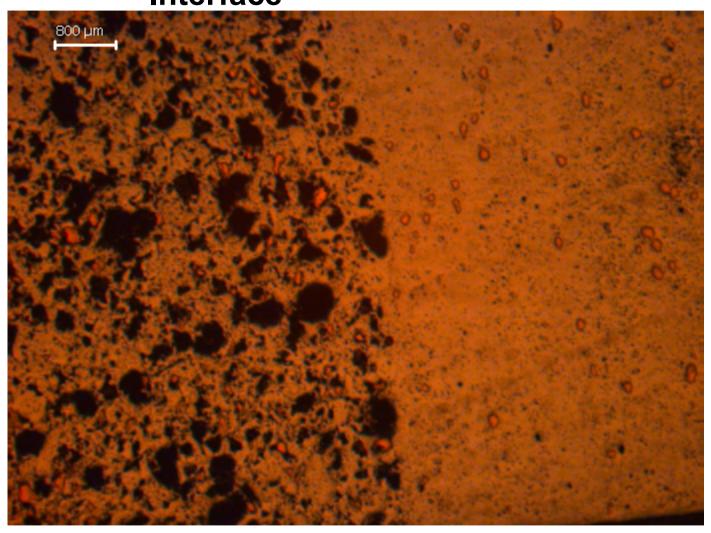
Required Pad Properties

- ✓ A stable coefficient of friction at all conditions.
- ✓ Uniform adsorption and dissipation of energy
- ✓ High shear strength
- ✓ High thermal conductivity
- ✓ High specific heat
- ✓ Low ware rate
- ✓ Minimal damage to rotor disc

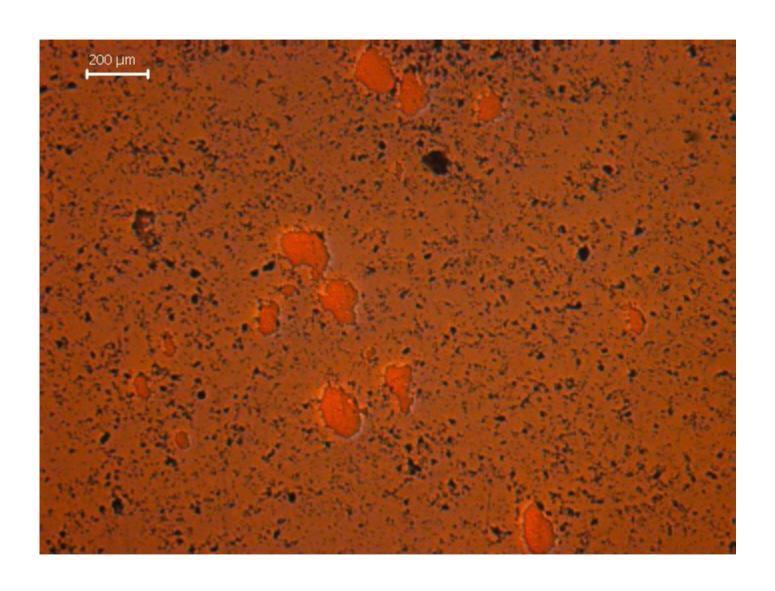
The present generation manufacturing is by two piece construction. A friction face and support plate. Mixing deferent materials with thermo setting organic adhesives to make a friction face, and joining to metal back plate for support and transfer the brake pressure.

Disadvantages

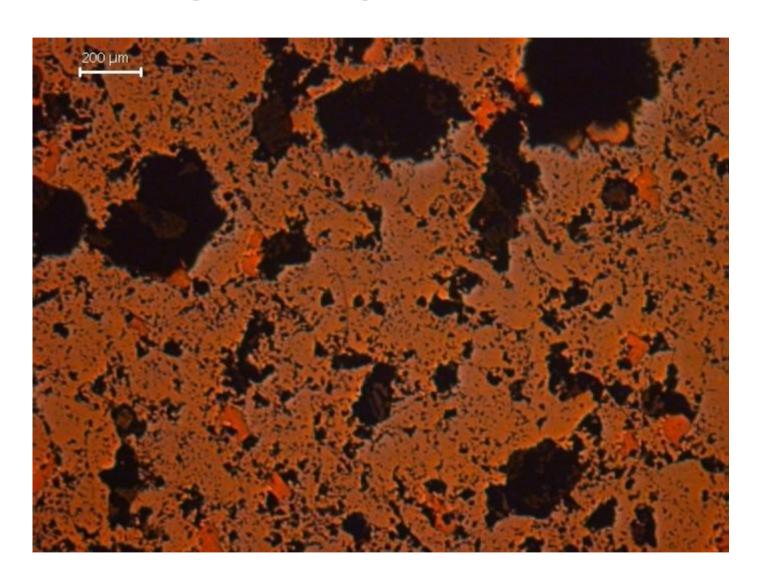
- *Carburization of organic material on surface due to heat accumulation
- *Poor heat dissipation
- *Variation of coefficient of friction
- *Thermal cracking of the friction face
- *Separation of friction pad and support plate
- *Aging due to heat and radiation
- *Fungus formation and loss of mechanical strength


Single homogeneous component to solve all problems by metal Matrix composites

Compaction of deferent metal powders and friction agents in single step compaction and sintering in controlled atmosphere


Advantages

- *High rate of production
- *No separation or bonding of plates
- *No chipping or cracking
- *No scrap or pollutants
- *Controlled coefficient of friction or properties
- *Clean and sharp edges
- *Light weight
- *Un limited shelf life


Magnified image of Interface

Magnified image of back Plate

Magnified image of Friction Face

Comparative Test Results

Under similar test conditions

Test	Sintered Metal Pad	Conventional Pad
Run down revolutions	19	29
Run down time (Sec)	3.3	5.1
Coefficient of friction	0.4	0.27
Mean torque, Kgfm	52	36
Peak torque, Kgfm	69	43
Mean drag, Kgf	291	202
Peak drag, Kgf	380	237
Thickness wear, mm	0.15	0.15
Operating Temp. *C	-80/ +700	-10/+250

POWDER METALLURGY ASSOCIATION OF INDIA

HIGH PERFORMANCE MATERIALS BY POWDER METALLURGY FOR AUTOMOTIVE AND ENGINEERING INDUSTRY AND THE 35^{TH} ANNUAL TECHNICAL MEETING OF PMAI

Certificate of Award

Best PM Product 2009 Sintered metallic disc brake pad

Awarded to

AKHILESH ENGINEERING, Hyderabad, India

in the international powder Metallurgy Conference PM-09 and the 35 th Annual Technical Meeting of PMAI held at Cidade De Goa Resort,
Vainguinim Beach, Panjim Goa, India from Feb. 16-18, 2009

President (PMAI)

Convener PM 09

Dated: 20th February, 2009

Best PM Product award

Sintered metallic Clutch plates for heavy machinery, earth movers and army tanks

Redson Industries Pvt. Ltd.
Manufacturers of High
Pressure Seamless Steel
Gas Cylinders

Manufacturers of LPG Cylinders for Domestic and Automobile Industries.

Thank you

REDSON ENGINEERS (P) LTD.

F-9/B, Phase - 1, IDA Jeedimetla, Hyderabad, Andhra Pradesh, India - 500 055.

Phones: +91-40-23091171, 40275298, 23095523

Tele-Fax: +91-40-23096236

E-mail: redsonengineers@gmail.com,

redsonindusries@gmail.com

Website: http://www.redson.org