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WHEEL POWER MANAGEMENT SYSTEMS
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WHEEL POWER MANAGEMENT SYSTEMS
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TIRE POWER BALANCE
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» Input Power comes from
driveline system

» Output Power goes to

vehicle chassis

> Power Losses occur due

to tire/soll deflections

5



TIRE POWER BALANCE

Output Power Input
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Input Power comes from
driveline system:
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Pw = Twww

Output Power goes to vehicle
chassis:
P =F
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TIRE POWER BALANCE
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Power Losses due to tire and

soil deflections:

» Normal Deflections

» Longitudinal Deflections
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TIRE POWER BALANCE

Output Power Input
< e
Power | osses Power

Normal Deflections

Rolling Resistance Power Loss

Pr=RV.=R[V,




TIRE POWER BALANCE
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TIRE POWER BALANCE

Output < Power B Input

Power Losses Power

» Input Power comes from
driveline system

» Rolling Resistance Power
Loss occurs

» Slip Power Loss occurs

» Output Power goes to
vehicle chassis

P’ = P +P +P"
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TIRE ENERGY EFFICIENCY
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POWER BALANCE OF VEHICLE
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VEHICLE SLIP EFFICIENCY
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VEHICLE SLIP EFFICIENCY

FxZ

Ns = 2

Fis+ E (F);iS('Si /(1= Sal) +F, Saz /(1= S(Sz )
L=l J

here, the total circumferential force is

sum

sz=§(F;i+ ER()+EF
i=1

Conclusion:

Slip efficiency of multi-wheel drive vehicles depends on
(i) both the total circumferential force and
(ii) its distribution among the drive wheels
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MECHANICAL POWER LOSSES IN POWER
MANAGEMENT SYSTEM
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VEHICLE FUEL EFFICIENCY
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VEHICLE LATERAL DYNAMICS
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VEHICLE LATERAL DYNAMICS

A\

T Interaxle PDU

Assumptions:

» Velocity is small (no inertia forces)
» No draw bar pull

» Interwheel differentials are open

N T~ SMy =0 SM,, =0
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VEHICLE LATERAL DYNAMICS

Analyze Results

» Interaxle PDUs do not make any impact on the rear tire
lateral force and rear tire side-slip angle:

F3 =0
» Interaxle PDUs do make an impact on the front tire lateral

force and front tire side-slip angle:
Fy =R, - F,)tand

» By changing the front tire circumferential force F, , interaxle
PDUs impact both the magnitude and direction (sense) of

force F



VEHICLE LATERAL DYNAMICS
Fy =R, - F,)tand

1. When F_, =R, , the front lateral
force is zero. No impact on vehicle
turnabillity.

2. When 0< F_, <R, , the front lateral

x1

force contributes understeering.

3. When F, <0, the front lateral force
dramatically increases. This results
In iIncreased understeering.

4. When F, >R, the front lateral force changes its direction
and contributes oversteering. This results in R, <R, .



VEHICLE SET UP FOR TIRE POWER

BALANCE RESEARCH
P' =P, +P +P)
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AWD VEHICLE CHASSIS DYNAMOMETER
WITH INDIVIDUAL ROLL CONTROL
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CONCLUSION

1. Wheel power management systems influence AWD
vehicle dynamics and fuel consumption by impacting
» Tire slip power and mechanical power losses
which depend on power distribution between the
driving wheels
» Front tire lateral forces which depend on power
distribution between the drive axles

2. Analytical methods were presented for mechanical and
slip power losses and lateral forces evaluation in AWD
vehicles

3. Vehicle set up and AWD chassis dynamometer were
developed for experimental research of wheel power
distributions and wheel power management systems
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