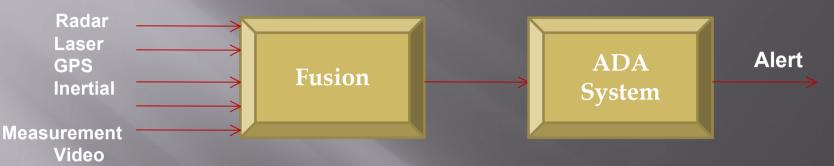
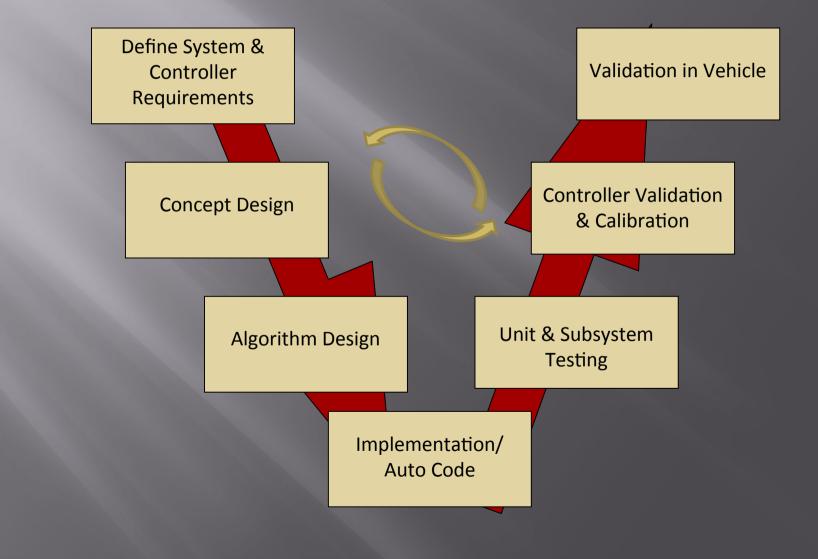
SCENARIO BASED TESTING OF ADVANCED DRIVER ASSISTANCE SYSTEMS

-Kausalya Paila DMC Systems India Pvt. Ltd. <u>Kausalya.p@embitel.com</u> <u>pkausalya@yahoo.com</u>

Agenda


- Introduction
- Terminology
 - Advanced Driver Assistance Systems (ADA systems)
 - Sensor Fusion
 - Model Based Development
 - Model Based Testing (MBT)
- Need for Scenario Based Testing in MBT
- Present Contribution & Results
- Summary
- Q&A

Helps driver to avoid or mitigate an accident


- Depending on the significance and timing of the threat, these systems will:
 - ALERT the driver to an impending danger
 - WARN if there is no driver reaction and
 - **ASSIST** or ultimately **INTERVENE**
- Existing ADA systems are Lane Departure Warning, Collision Preparation System and Forward Collision Warning

Sensor Fusion Algorithm

- Sensor fusion is the combining of data from several sensors
- Fusion improves the accuracy of data by giving out a union of data from these sensors
- Examples of ambiguity or inaccuracy of data are
 - Width of an object detected is different from different sensors
 - Radar data may not be accurate in bad weather conditions
 - No of objects detected may vary based on positioning of sensors

Model Based Development

Model Based Testing

- Largest possible share of the testing is done at the model level
- Executable models as a main source of information for testing
- Test information from the model stage can be reused for subsequent testing (SIL&HIL)
- Test scenario creation from the functional specification and the requirements-based testing forms the focal point of the dynamic testing workflow
- Model test vectors to be derived from the software requirements specification according to established criteria

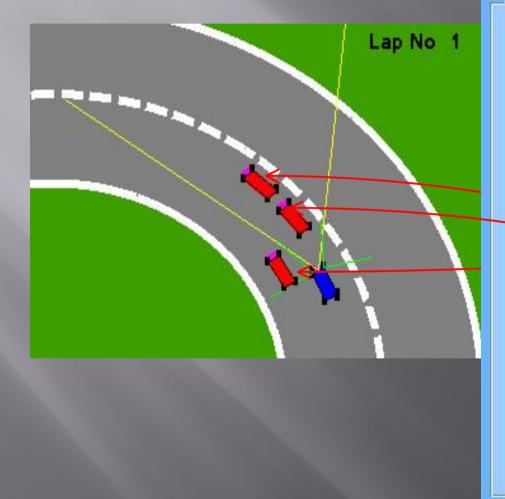
Need for Scenario Based Testing

An Example Requirement:

- Six Objects of Interest (OOI) shall be passed from the Object Selection function to the AACC function. In all cases the object may be stationary, moving in the same direction or moving in the opposite direction relative to the host vehicle.
- OOI[2] is the nearest OOI in the adjacent lane to the left.
- Test Vector generation for such requirements is not only difficult with existing COTS tools but also is difficult to visualize from a tester's perspective
 - Assertion based testing could be a solution but tester's effort is very large in creating assertions for all possible scenarios
- Scenario based testing helps in the cases similar to above where user can create a scenario and generate test vectors

Present Contribution - A Scenario Based Testing Tool

- A prototype is done to prove the concept
- Physical system behavior is modeled
- Least Square Estimation technique is used for estimation algorithm (LSE will be replaced by Kalman filter technique in next version)
- Vehicle parameters and environmental parameters shall be configured by the user in order to run the simulation
- Test vectors are generated for the simulation duration specified by user
- Test vectors can be saved by the user in excel or mat format
- Future plan is to make the tool **configurable**


Testing Fusion Application - A Case Study

- The prototype tool is configured to test Fusion Application
- Motivation behind Choosing Fusion Algorithm:
 - Complexity
 - Testing such an application is laborious because of the large no of inputs and outputs handled by the application
 - Accurate testing can be done with defined scenarios
 - Need to use a tool which can combine both the automated test vector generation process and scenario based testing approach

Example...

	Environment	
	Road Type Circular_Left LRR Range 200 m	stion Time 60
	Radius of curvature 200 m SRR Range 30 m	tep Time 0.5
-		meStamp 7.5
	Host vehicle	
	Velocity 10 m/s Position - X 230	Configure Scenario
		t Vehicle 1
	Acceleration 0 m/s/s Position - Y 0	FR. Out-LESR
Î Î Î		os; Inf LongPos; 26.30m
50 - C 1		: Inf LatPos : -2.63m
1	- Target Vehicles	th : Inf Azimuth : -5.71*
	No of targets 3	: Inf Range : 26.43m
	No of targets 3	RR Out-RFSRR
	Target vehicleSelect target vehicle	ps: Inf LongPos; Inf
		: Inf LatPos : Inf
	Velocity 10 m/s Long, distance 10 m	h: Inf Azimuth: Inf
	Acceleration 0 m/s/s Lat. distance 10 m	: Inf Range : Inf
		FOF
	Set	ps: Inf LongPos; 17.63m
		: Inf LatPos : 20.66m
100		h: Inf Azimuth: 49.53*
	Load	: Inf Range : 27.16m

Example...

Target Vehicle3	
In-LFSRR	Out-LFSRR
LongPos : Inf	LongPos : Inf
LatPos : Inf	LatPos : Inf
Azimuth : Inf	Azimuth : Inf
Range : Inf	Range : Inf
In-RFSRR	Out-RFSRR
LongPos: Inf	LongPos : Inf
LatPos : Inf	LatPos : Inf
Azimuth : Inf	Azimuth : Inf
Range : Inf	Range : Inf
LRR	FOF
LongPos: 45.19m	LongPos: 47.44m
LatPos : -0.69m	LatPos : -0.69m
Azimuth : -0.88°	Azimuth : -0.83*
Range : 45.20m	Range : 47.45m

	2200														
(GZ26	•	<i>f</i> ∗ 2		57	514				01					
	DP	DQ	DR	DS	DT	FW	GM	GS	GW	GX	GY	GZ	HA	HB	-
				veh_Lane	Veh_TimeToLnCross	Fus_NmValTargts	Fus_ObjA_LongPos		Fus_ObjA_DynProp	FusTrkBR	FusTrkBR			FusTrkBOII	
2	0	(' '	(62	3	10		3	0	1	2		1	-11
3	0	(· ·	1	62	3	10.53824826		3	0.033886		2		1	
4	0	(· -		62	3	11.07639085		3	0.035619		2		1	
5	0	(,	1	62	3	11.61442238		3	0.037354		2		1	_
6	0	(· ·	1	62	3	12.15233747	1	3	0.03909		2		1	-11
1	0	(· ·		62	3	12.69013071	1	3	0.040826		2		1	-11
8	0		· ·	1	62		13.22779671	1	3	0.042564	1	2		1	-11
9	0		· ·	1	62		13.76533008	1	3	0.044301	1	2		1	=
10	0		· ·		62		14.30212344	1	3	0.04604		2		1	-11
11	0	(,		62	3	14.83997738	1	3	0.047779		2		1	-11
12	0				62	3	15.37708054		3	0.049518		2		1	-11
13	0	(62	3	15.91402952		3	0.051258		2		1	-11
14	0	(· ·		62	3	16.45081893		3	0.052998		2		1	-11
15	0	(62	3	16.9874434			0.054738	1	2	1	1	-11
16	0	(· · ·		62	3	17.52389755					11	ap No	1	-11
17	0	(62	3	18.06017599					- 1		(1991)	_
18	0	(62	3	18.59627335			1.11					_
19	0	(· · · ·		62	3	19.13218426								-
20	0	(62	3	19.66790334								_
21	0	(62	3	20.20342521								_
22	~	(62	3	20.73874452 21.27385589					1			_
23	0	(62	3			\sim						_
24	0	(62 62	3	21.80875396 22.34343336	the second se							_
25 26	0	(62	J	22.34343336			1	A V			S	-
26	0	(62	J	23.41211473				Y			100	-
27	0	(62	J	23.94610598							1	_
28	0	(62	J 	23.94610598 24.47985713					-			-
30	0	(62	J	25.01336284				P	11			-
30	0	(62	J 	25.01336264								-
31	0				62	3					1	1			
	ע ד א∖Sh		30		62	3	20.07901052								Ť
						-								10	11
														12	

Summary

- Model based development
- Model based testing
- Need for scenario based testing in MBT
- A new concept or tool to realize SBT
- Tool details
- Results

QUESTIONS?