

Simulating Advanced Damping Technologies

Janusz Gołdasz, Ph.D.

Vehicle Dynamics Expo 2010 22-24 June, Stuttgart, Germany

© BWI Group 2009. All rights reserved.

This document is the property of BWI Group. It may not be copied or disclosed to a third party without the explicitly written consent of BWI Group.

Chassis Systems

BWI Group acquired Suspension and Brakes business lines from Delphi in 2009

- 3 technical centers (Dayton, Paris, Krakow)
- 4 manufacturing plants (Krosno, Chihuahua, Luton, Fangshan (opens in 2011))

TECHNICAL CENTER KRAKOW:

- Passive Dampers & Damper Modules Global Engineering Center
- Suspension Components Engineering (MR dampers, ASBS components)

Suspension headcount: 231

- Product, Manufacturing, Industrial Engineering
- CAD & CAE & Simulation
- Prototype Center
- Test & Validation Lab
- Metrology & Materials Lab
- Valving Lab & Ride Vans
- Supporting Functions (Purchasing, Finance, Logistics, Administration)

This document is the property of BWI Group. It may not be copied or disclosed to a third party without the explicitly written consent of BWI Group.

Page 2

Damper Modeling Tools @ BWI

This document is the property of BWI Group. It may not be copied or disclosed to a third party without the explicitly written consent of BWI Group.

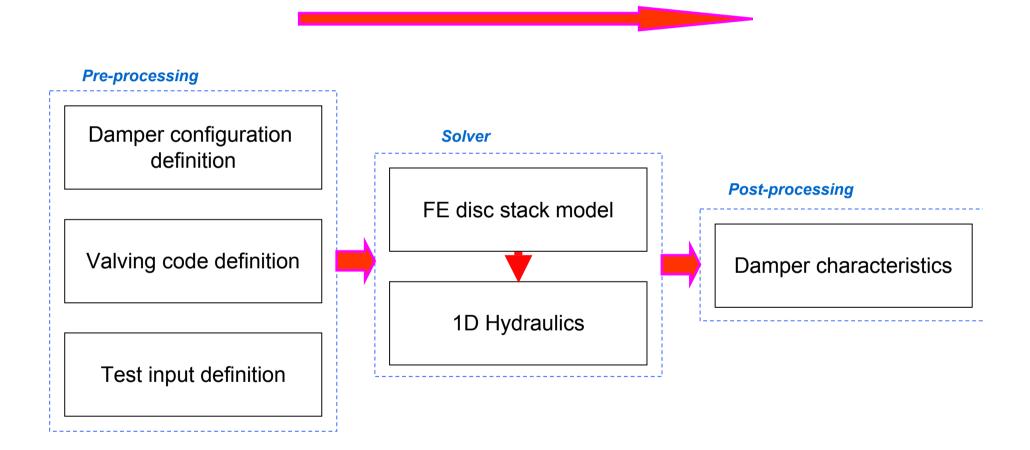
- BWI has utilized damper modeling tools since 1990s
 - Support for nearly every passive or semi-active shock absorber configuration developed in-house
- Own codes that have been under continuous development and updated (improved) over the years

Advantages

- Accelerate damper & vehicle tuning, RFQ
- Less iterations in the lab with the hardware
- Valuable insight into damper physics
- Analysis of damper design, incl. sensitivity and tolerance studies
- Synthesis of damper design design optimisation
- Great learning tool for technicians and the engineering community
- Valuable aid in valve code selection & proofing
- Computer aided investigation, e.g. tracing assembly errors

Page 4

Chassis Systems


- TwinRide is our standard tool for damper design and modeling
- Unified User Interface with a connection to a database of components

TwinRide - tr 20.xtt																			
🗐 Elle Edit View Insert Figmat Iools Data Window Help 🗾 🗗														8					
i 1 2 2 2 2 3 1 5 3 3 3 2 3 1 2 4 2 1 1 1 Review End Review End Review [2 1 1 2 2 3 2 2 3 2 3 2 3 2 3 2 3 2 3 2																			
	▼ ;	6. C	D	E	J	K	1	M	N	0	P	Q	R	S	Т	U	V	W	
1	Twin Ride 2.0				1		<u> </u>			0	1	G	IX.			0	· ·	**	
		Show more info 🔤				Generat Li		Typical \ Set											
3	Valve Type 2005+ 🔄 Twin Tube Size 32																		
4	4 Piston Valve																		
14	Intake Retainer				Tooled cor	mponent 🗔													
15		Details	Code	Part No.	Tooled	OD.[mm]	Curv. R[mm]	Clamp Dia.[mm]	Thick.[mm]	Offset[mm]									
16	62246224		25 -	22214037	Yes	25	0	25	1.2	0									_
17	17 Spacer With						_		Tooled cor	mponent 🗐									
18		Details	Code	Part No.	Tooled	0D.[mm]	Thick.[mm]	Edge conditions											
19			11550 -	22110000	Yes	11.5	0.5	0											_
20	Intake Deflective Dis	c	Number of Discs	3	-		-	Use no	Tooled cor	mponent 🗌									-
21		Details	Code	Part No.	Tooled	ID.[mm]	00. (mm)	Thick. [mm]	Material										
22		3	í — — — — — — — — — — — — — — — — — — —		Yes	8.05	27	0.2	STEEL -										_
23		2	2 2725 -		Yes	8.05	27	0.25	STEEL -										_
24		1	2725 -	22169290 Without	Yes	8.05	27	0.25			_	_	_	_	_	_	_	_	_
	Compression office											-							
	Piston ASM		1			Preload (reb)	OD hub (reb)	ID Seat	Tooled cor No. Holes	Hole Dia.	Hole	Preload	OD hub	ID Seat	No.Channels	Channel	comp. channel	Total Area(mm	n"2]
36		Details	Code 8x 2, 0 -	Part No.	Tooled	[mm]	(mm)	(reb)[mm]	(reb)	(reb) [mm]	Len.(reb)[mm]	(comp)[mm]	(comp) [mm]	(comp)[mm]	(comp)	Area[mm'2]	length [mm]	(comp)	_
37 38			0.2,0	22249508AA	No	0.015	11.3	20.5	8	2	7.95	0.0925	20.35	25.85	8	9.48	8.77	75.84	
39 Rebound Orifice Disc Use not Tooled component																			
40	2	Details	Code	Part No.	Tooled	ID.(mm)	00. (mm)	Thick. [mm]	Slot width (mm)	No. slot	Material	slots area [mm2]							
41			2,00 -	22118725	Yes	8.05	22	0.13	1.4	4	STEEL 🖵	0.728							
42																			
43	Rebound Deflective	ebound Deflective Discs Number of Discs 5 🔁 Use not Tooled component																	
44		Details	Code	Part No.	Tooled	ID.[mm]	0D. [mm]	Thick. [mm]	Material										
45		1	2215 💌	22118210	Yes	8.05	22	0.15	STEEL 🔫										
46		2	2 2215 -	ALT OLIO	Yes	8.05	22	0.15	STEEL 👻										
47		3	2215 -	1	Yes	8.05	22	0.15	STEEL -										_
48		4	4 2215 -	22118210	Yes	8.05	22	0.15	STEEL -										_
r	→ N 2005+ / Dam	per Assem	bly /												<		ш		>
Read	dy			doouw						. 11								NUM	

This document is the property of BWI Group. It may not be copied or

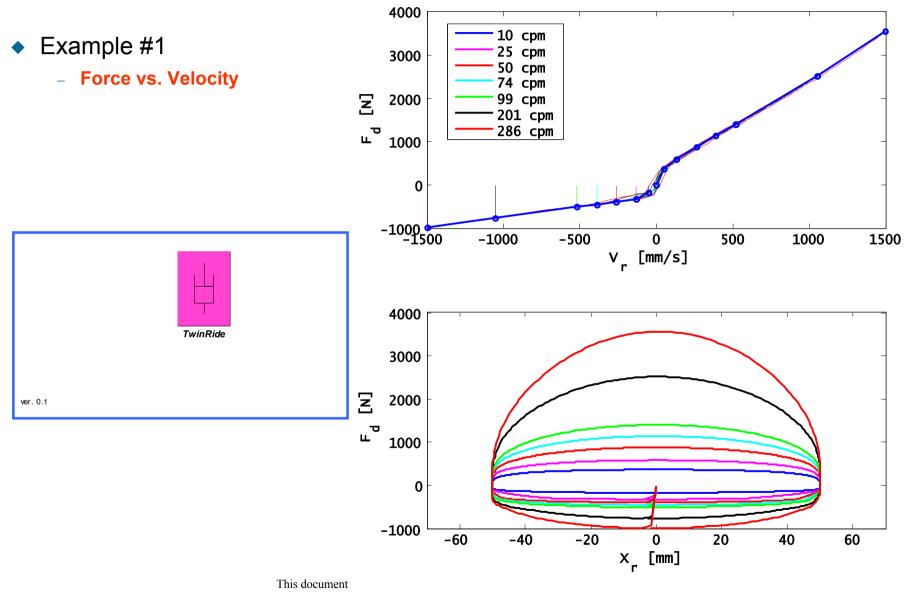
Typical Architecture

Passive dampers only

This document is the property of BWI Group. It may not be copied or disclosed to a third party without the explicitly written consent of BWI Group.

© BWI Group 2009. All rights reserved.

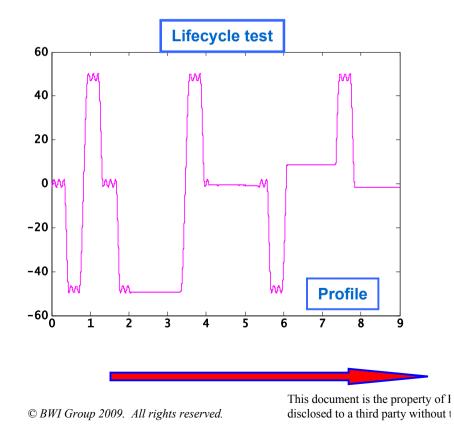
Page 6 Ch

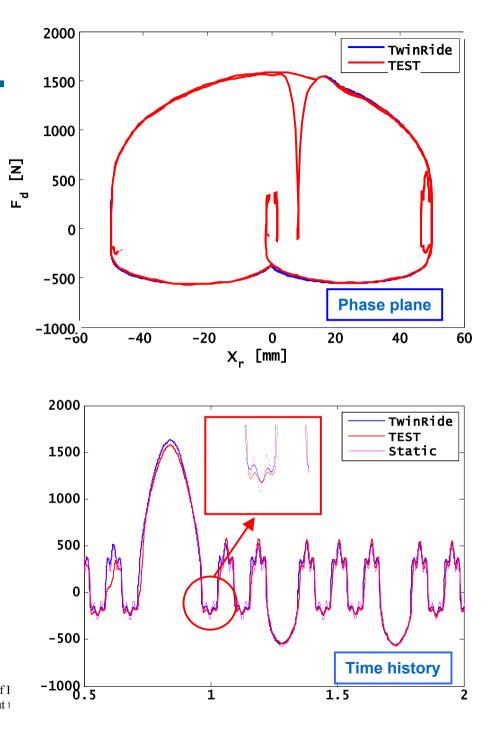


Modeling features

- Force vs. Velocity, Force vs. Displacement phase planes prediction (hysteresis)
- Steady-state Force vs. Velocity curve prediction
- Oil-gas mixture compressibility
- Fluid aeration
- Gas-to-liquid transformation equations
- Global cavitation model
- Tube flexibility (expansion with pressure)
- Leakage rate past piston and rod guide assemblies
- Piston, rod guide, spring seat friction
- Functional math-based piston and base valve models
- Deflection, stress characteristics for deflected disc assemblies
- Access to all important geometry variables via a database interface
- Unified user interface

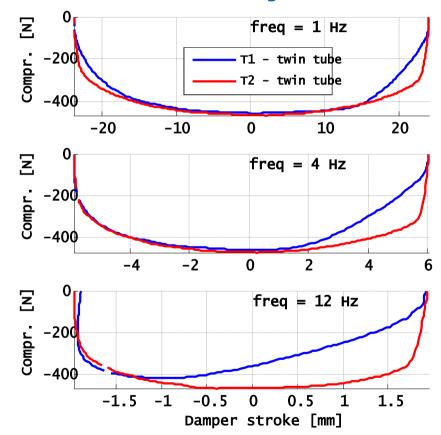
Application Examples




disclosed to a three party without the explicitly written consent of B wit Group.

raye o

- Example #2
 - Response to arbitrary road profiles



Application Examples

- Example #3
 - Vehicle tuning
 - » 2 twin-tube shock absorbers
 - » Identical steady-state F-V curves, different valve balance
 - » T1 soft compression piston valve, stiff base valve
 - » T2 stiff compression piston valve, soft base valve
 - Quarter car results confirm the two codes have impact on vehicle ride
 - » E.g. better comfort, and road holding with **T2**

Virtual tuning sessions

This document is the property of BWI Group. It may not be copied or disclosed to a third party without the explicitly written consent of BWI Group.

Frequency Dependent Valving Model

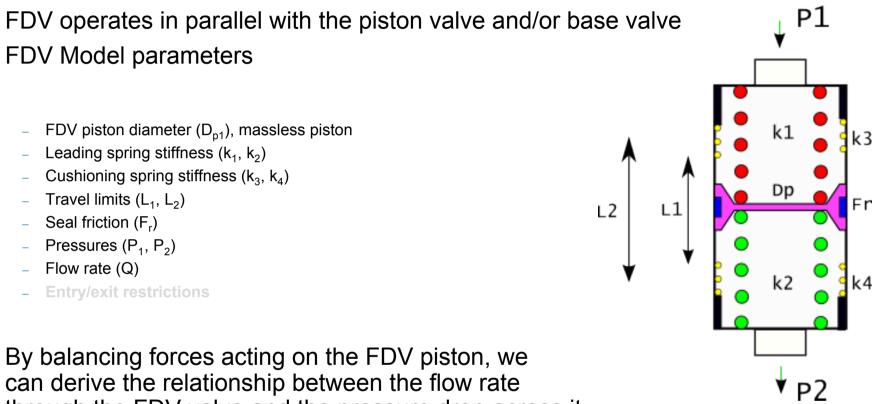
- Background information
 - Current market trends have indicated a need for simple, inexpensive add-ons in ordinary shock absorbers
 - Notable examples: inertia valves, displacement-dependent valves, amplitude-selective valves (ASD), frequency-dependent valves (FDV)
- So-called Frequency-Dependent Valving (FDV) is a simple valving concept that seems to attract interest from car makers
- FDV is claimed to improve ride comfort & enhance vibration isolation w/o loss of handling and safety degradation
- FDV allows for lower damping force at higher frequencies yet maintains high damping forces at lower frequencies
- Typically, it operates in parallel to the main valve (piston) and/or base valve if used on a twin-tube shock absorber
- BWI has been developing FDV systems since 2002
 - 2 generations of FVD developed so far

In case of a twin-tube damper, it results in a system of 5 (or 6) ODE equations

Chassis Systems

Page 13

- through the FDV valve and the pressure drop across it FDV value is then incorporated into the shock absorber model ("damper-indamper" approach)
- can derive the relationship between the flow rate
- **Entry/exit restrictions** By balancing forces acting on the FDV piston, we

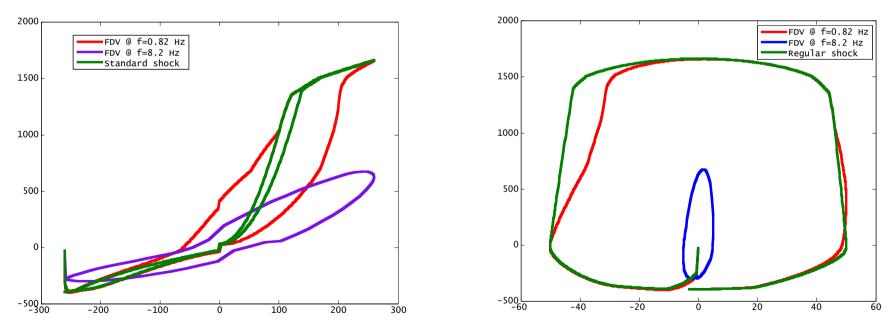

FDV piston diameter (D_{p1}), massless piston

that need to be solved simultaneously

Leading spring stiffness (k_1, k_2)

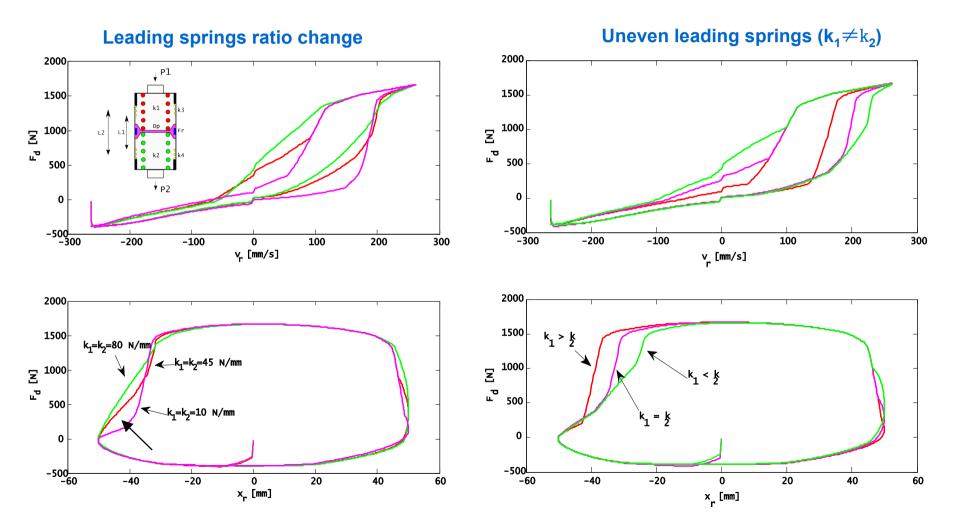
FDV Model parameters

- Cushioning spring stiffness (k_3, k_4)
- Travel limits (L₁, L₂)
- Seal friction (F_r)
- Pressures (P_1, P_2)
- Flow rate (Q)



FDV Valve Model

- It can be proven by mathematical analysis FDV performance is frequency-dependent
- Application of FDV in a shock absorber may have big impact on vehicle dynamic behavior
- A model is essential for understanding the FDV impact



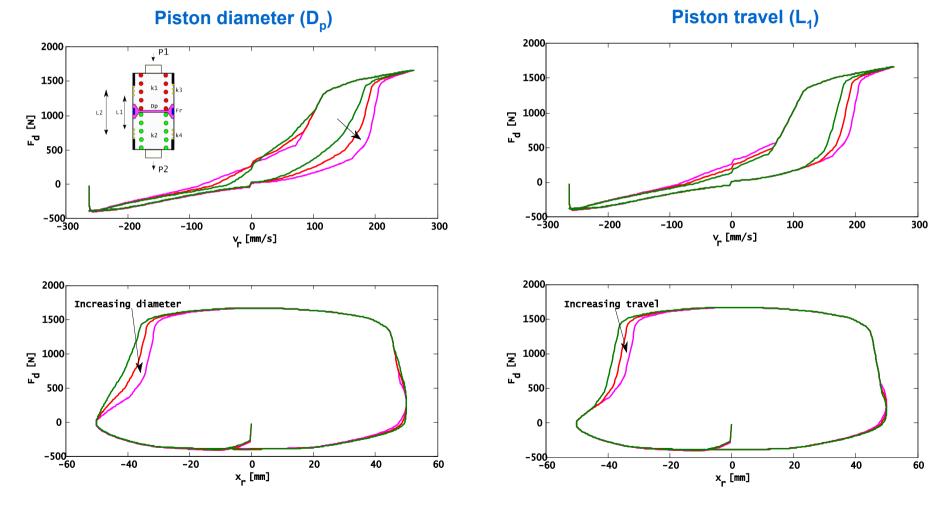
Twintube shock absorber, FDV valve

This document is the property of BWI Group. It may not be copied or disclosed to a third party without the explicitly written consent of BWI Group.

Simulation results – leading springs (k₁, k₂)

This document is the property of BWI Group. It may not be copied or disclosed to a third party without the explicitly written consent of BWI Group.

© BWI Group 2009. All rights reserved.


Chassis Systems

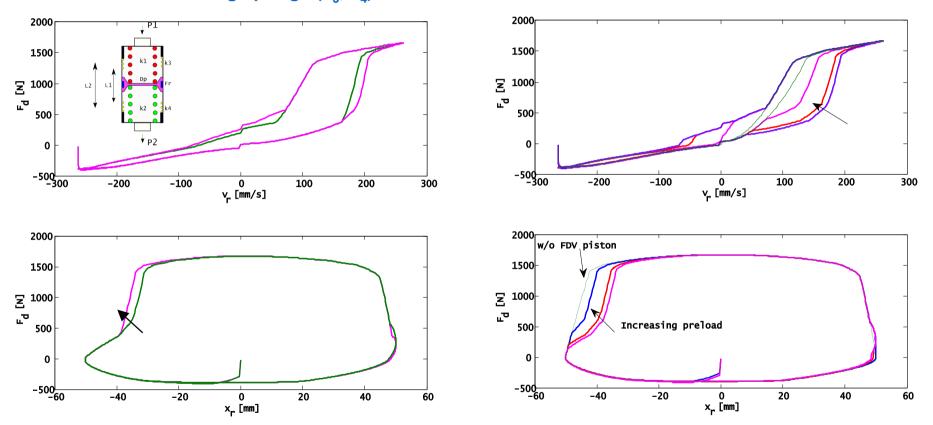
Page 15

FDV Valve Model

Simulation results – FDV piston diameter, piston travel

This document is the property of BWI Group. It may not be copied or disclosed to a third party without the explicitly written consent of BWI Group.

© BWI Group 2009. All rights reserved.


Chassis Systems

Page 16

FDV Valve Model

Simulation results – Cushioning springs, valve preload

Cushioning springs (k₃, k₄)

Preload change (entry/exit blow-offs)

This document is the property of BWI Group. It may not be copied or disclosed to a third party without the explicitly written consent of BWI Group.

Page 17

Chassis Systems

- Damper modeling tools
 - Damper modeling tools provide valuable insight into damper physics and interactions between its key components
 - The models form basis for simulating and developing more advanced passive & semi-active damping technologies
- Frequency-Dependent Valve (FDV) valve
 - FDV valves are a simple yet effective way of enhancing the performance of a passive shock absorber @ standard and elevated frequencies
 - Developing the model of an FDV valve was necessary to understand the influence design variables have on the valve performance
 - Preliminary vehicle studies have shown well-designed FDVs may contribute to better isolation from road inputs at frequencies above the wheel resonant frequency w/o any or little degradation of ride and handling metrics