

The closed air suspension system of the Porsche Panamera Vehicle Dynamics Expo 22. - 24. June 2010 at the new Messe, Stuttgart

Dipl.- Ing. Torsten Nitschke, responsible project engineer for the Panamera air spring system, Dr. Ing h. c. F. Porsche AG

The closed air suspension system of the Porsche Panamera Dipl.-Ing. Torsten Nitschke, Aktive und Passive Federungssysteme, Dr. Ing h. c. F. Porsche AG

Content

- Introduction
- Operation and function
- Components
- The closed air supply system
- Control unit and software development process
- System functionality and controller strategy
- The new air spring design

Page 4

fig. 1: variation of suspension set up

fig. 2: variation of spring rate

PORSCHE

Operation and function

fig. 3: interieur Panamera

fig. 4: operation panel

Comfort => shock absorber comfort + normal vehicle level + soft spring rate
Sport => shock absorber sport + normal vehicle level + soft spring rate
Sport Plus => shock absorber performance + low vehicle level + hard spring rate

The closed air suspension system of the Porsche Panamera Dipl.-Ing. Torsten Nitschke, Aktive und Passive Federungssysteme, Dr. Ing h. c. F. Porsche AG

Operation and function

fig. 5: various vehicle levels

Lift level : + 20 mm above normal vehicle level

Normal vehicle level

Low level : - 25 mm below normal vehicle level

Components

- front air spring strut with additional air volume and PASM shock absorber,
- separate rear air spring with additional air volume and PASM shock absorber
- air supply system with compressor, pressure sensor and pneumatic valve block

The closed air supply system

fig. 7: pneumatic scheme of the closed system

fig.9b: scheme air spring fileihate

Advantages of the closed compared to the open air supply system:

- energy consumption reduced by around 60%
- compressor operating time reduced by 75%
- high adjusting speed v > 4mm/s
- weight savings of around 1kg
- less costs due to smaller components

Page 9

Control unit and software development process

System functionality and controller strategy

Spring rate switch point

System functionality and controller strategy

Air leakage compensation

System functionality and controller strategy

Diagnostics and fault detection

fig. 12: PIDT-Tester

iot <<					Protokolidienste
DTC	Status	Steuergerät	DSN	Teilenummer	
		ACC (Adaptive Cruise Control)			
		Airbag			
		Anhaenger			
		Audioverstaerker			
		Batteriemanager			
		BCM hinten			
		BCM vome			
		BKE (Bedien und Klimaeinheit)			
		DME (Digitale Motorelektronik Hybrid)			
		DME (Digitale Motorelektronik TDI)			
		DME (Digitale Motorelektronik)			
		EPB (Parkbremse)			
		Gateway			
		HeadUnk			
		Klimakompressor			
		KLSM (Kombilenkstockschaltermodul)			_
1000		Kombinstrument			

fig. 13: user interface

PORSCHE

The new air spring design of the Porsche Panamera

Andreas Nessel Stuttgart, 22.06.10

Panamera front axle – Package of air struts

Division Chassis & Safety, BU Chassis Components Segment Electronic Suspension Systems Ontinental 🟵

Vehicle Dynamics 2010, Stuttgart Andreas Nessel, Slide 16 © Continental AG

Integration of addition volume

Additional volume

Switch to sport plus mode by separation of the additional volume

Air spring main volume

Division Chassis & Safety, BU Chassis Components Segment Electronic Suspension Systems

Vehicle Dynamics 2010, Stuttgart Andreas Nessel, Slide 17 © Continental AG

Addition volume valve

Division Chassis & Safety, BU Chassis Components Segment Electronic Suspension Systems

Vehicle Dynamics 2010, Stuttgart Andreas Nessel, Slide 18 © Continental AG

Technical data:

- Nominal opening diameter 12mm
- Mass 370g
- Diameter 40mm
- Switch time < 100ms
- Integrated air spring filling

Development of a new valve to meet the weight and packaging targets

Dynamical behavior of the front axle air spring

Stiffness vs. frequency Measurement of air spring only (damper excluded)

Division Chassis & Safety, BU Chassis Components Segment Electronic Suspension Systems

Vehicle Dynamics 2010, Stuttgart Andreas Nessel, Slide 19 © Continental AG

Panamera rear axle – Package of air springs

Division Chassis & Safety, BU Chassis Components Segment Electronic Suspension Systems

Vehicle Dynamics 2010, Stuttgart Andreas Nessel, Slide 20 © Continental AG

Design of rear axle air spring

Division Chassis & Safety, BU Chassis Components Segment Electronic Suspension Systems Ontinental 🟵

Vehicle Dynamics 2010, Stuttgart Andreas Nessel, Slide 21 © Continental AG

Influence of piston contour on air spring characteristics

Division Chassis & Safety, BU Chassis Components Segment Electronic Suspension Systems

Vehicle Dynamics 2010, Stuttgart Andreas Nessel, Slide 22 © Continental AG

Piston contour

Division Chassis & Safety, BU Chassis Components Segment Electronic Suspension Systems

Vehicle Dynamics 2010, Stuttgart Andreas Nessel, Slide 23 © Continental AG Ontinental 🟵

Benchmarking of air spring related harshness

$$HarshnessCoefficient = \frac{c_{0,1} - c_{25}}{c_{25}} \cdot 100\%$$

Low harshness due to bellow design

Division Chassis & Safety, BU Chassis Components Segment Electronic Suspension Systems **Ontinental**

Vehicle Dynamics 2010, Stuttgart Andreas Nessel, Slide 24 © Continental AG

Summary

Switchable rate air springs...

- ...enable the driver to select between sportive and comfortable characteristic.
- ...influence the steering behaviour in the direction of a more agile handling in the sport mode.
- A compact design enabled by...
- ...a new developed smaller valve and the integration of the additional volume into the air spring module.
- ...reduction of required air spring volume by appropriate piston contour design.

Outstanding air spring comfort achieved by...

- ... using outer guiding tubes, for the Porsche Panamera the very first time for a
 - stand alone air spring module on the rear axle.
- ...using bellows with comfort supporting harshness properties.

Division Chassis & Safety, BU Chassis Components Segment Electronic Suspension Systems

Savn4000 **Questions and** Discussion

The closed air suspension system of the Porsche Panamera Dipl.-Ing. Torsten Nitschke, Aktive und Passive Federungssysteme, Dr. Ing h. c. F. Porsche AG

