
Combining Two Worlds: Precise Real-Time-
Based and Convenient PC-Based Testing Based and Convenient PC-Based Testing

Dr.-Ing. Rainer Rasche

dSPACE GmbH · Rathenaustrasse 26 · 33102 Paderborn

automotive testing expo · June 22 , 2010nd

Agenda

Testautomation

Hardware-in-the-Loop (HIL) Simulation

Automated PC-based ECU Testing

Real-Time Testing (RTT)

Python scripting

Basics on Executing RTT SequencesBasics on Executing RTT Sequences

Examples

Summary

2

Hardware-in-the-Loop (HIL) Simulation

Advantages

Early testing without real prototypes.

Modifying test parameters easily.

Avoiding dangerous situations.

Avoiding abrasion,
resource consumption.resource consumption.

Automated testing possible.

3

Overview HIL Simulation

HIL Simulator

Processor board(s) run models in real-time,
e. g. vehicle dynamics, lighting.

Connected to ECU(s) via I/O and signal
conditioning.

Real actor loads.

Fault Injection Unit (FIU)

4

I/O I/O

Power
Supply

Connected to bus systems
e. g. CAN, LIN, FlexRay.

Failure Simulation on ECU pins.

Real actor loads.

Power supply replaces vehicle battery.

Bus

Real sensor loads.

ECU(s) - Unit under Test

Board(s)

Actor Loads Sensor Loads

N
o

n
 R

ea
l-

ti
m

e

PC

Automated ECU Testing

Platform Access

Failure Simulation Access

Remote Calibration (COM)

Real-Time Testing

Remote Diagnostics (COM)

<…>

<…>

Requirements
Engineering

Version Control Test Management

ag
To

o
l

Automated ECU Testing

Repeating tests precisely and
automatically as often as required.

Access to all relevant test interfaces.

State of the art:
Convenient PC-based
test development and execution.

N
o

R
ea

l-
ti

m
e

Fault Injection Unit (FIU)

I/O I/O

ECU(s) - Unit under Test

Board(s)

5

HIL Access (ASAM HIL API)

C
al

/D
ia

g

Computation of Real-Time Tests and Simulation Model

Step size

Simulation Model

PreComputation

PostComputation

Idle

Python interpreter is part of the real-time application.

Real-time tests can be hooked in before or after model execution.

Synchronized execution of simulation model and tests.
every model change can be observed by real-time tests (e. g. concurrent watchdogs)
real-time test can access the model in every step (e. g. for reactive stimulus)

time
Real-Time Testing
and Simulation Model

6

Why Python for Describing Real-Time Tests?

High-level programming concepts result in compact and readable code.

Easy to learn, easy to use, easy to extend libraries.

Various standard libraries available out of the box.

Functionality can easily be extended by user libraries.

Successfully in use for test automation of dSPACE simulators
for several years (AutomationDesk).for several years (AutomationDesk).

Python can now also be used for real-time test programming.

Existing test know-how can be reused.

Python objects can easily be passed between host and target.

7

Example: Flashing (ok)

8

Example: Flashing (not synchronous)

9

Example: Warning-light activated correctly

10

Example: Warning-light activated by accident

11

Generators and Observers

ObserversSignal Generators

Step

Wobble

Pulse-Pattern

Engine Start Phase Voltage

Front-Rear-Synchronization

Warning-Light-Activation

Select data (e. g. error event logging)
React (start additional test, abort the test, etc.)
Run concurrently (e. g. watchdog)

12

Implementing A Real-Time Test Sequence

Wobble Warning-Light-
Activation

Front-Rear-
Synchronization

Pulse-Pattern

Concurrent aggregation of modular
signal generators and observers

13

Implementing A Real-Time Test Sequence

Pre-conditions

Wobble Warning-Light-
Activation

Front-Rear-
Synchronization

Pulse-Pattern

Post-conditions

14

Python Example

Pre-conditions

Post-conditions

15

What Real-Time Testing allows

Tougher Requirements for ECU Testing

Timing precision (sample time precise).

Reproducability (100%).

Test reactivity (in same sample step).

Data selection.

ECU Testing for Tougher Requirements

Data selection.

Concurrent watchdogs.

Flexible, powerful test
programming language (Python).

16

Graphical Test Description

Requirements
Engineering

Version Control Test Management

How to combine
Real-Time sequences
and PC-based
test descriptions?

Fault Injection Unit (FIU)

I/O I/O

ECU(s) - Unit under Test

Board(s)

HIL Access (ASAM HIL API)

17

Graphical Test Description

Requirements
Engineering

Version Control Test Management

Platform Access

Failure Simulation Access

Remote Calibration (COM)

Real-Time Testing

Remote Diagnostics (COM)

TestFramework

Report

Fault Injection Unit (FIU)

I/O I/O

ECU(s) - Unit under Test

Board(s)

18

HIL Access (ASAM HIL API)

Test Process Integration

Requirements
Engineering

Version Control Test Management Bi-directional
Synchronisation with DOORS

Fault Injection Unit (FIU)

I/O I/O

ECU(s) - Unit under Test

Board(s)
SCC-based Version Control Interface for
Visual SourceSafe,
Subversion, MKS etc.

19

HIL Access (ASAM HIL API)

Test Report (Overview)

20

Detailed Test Report: Monkey Test TurnSignalLever

t

t

t

Results logged by
real-time observers
and transferred to host PC.

21

Detailed Test Report: Monkey Test TurnSignalLever

Wobble (Stimulus)

t

t

t

22

Summary

Timing precision, reactive and concurrent real-time tests in Python allow

ECU Testing for Tougher Requirements
Tougher Requirements for ECU Testing

Embedded into convenient PC-based graphical test development and execution.

Test Framework
Initialization, Evaluation, Reporting, CleanUp, Error Handling, etc.

Easy combination with other other HIL access types Easy combination with other other HIL access types
Diagnostics, Calibration, FIU etc.

Easy integration into the test process
Requirements Engineering, Version Control, Test Management etc.

23

Thank you very much for your attention.

© Copyright 2010, dSPACE GmbH. All rights reserved.

Brand names or product names are trademarks or registered trademarks

of their respective companies or organizations.

Contact: rrasche@dspace.de

