

AdBlue vs Add-nothing Debate

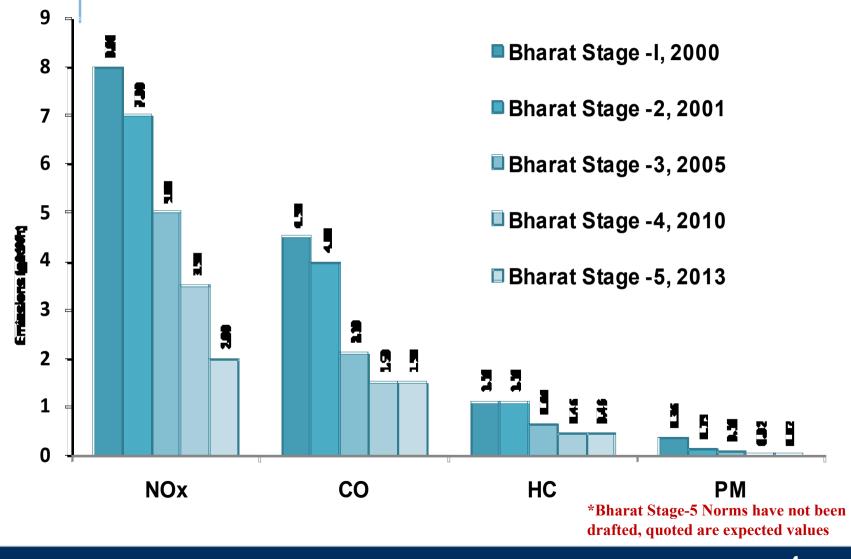
Anirudh Jaipuria

Deputy Manager, Engine R&D

ASHOK LEYLAND

Contents

- Heavy Duty Diesel Emission Norms
- Emission Technology Overview
- □ Ashok Leyland Engines
- Effect on Cooling Requirements
- **Engine and Vehicle layout**
- Performance And Emission


- **Engine durability**
- □ Oil Requirements & Life
- □ Vehicle running costs
- Feasibility of SCR & EGR for future norms
- □ Summary

Heavy Duty Diesel Emission Norms

- Emission Technology Overview
- □ Ashok Leyland Engines
- Effect on Cooling Requirements
- □ Engine and Vehicle layout
- Performance And Emission

- Engine durability
- Oil Requirements & Life
- □ Vehicle running costs
- Feasibility of SCR & EGR for future norms
- □ Summary

Evolution of Indian Emission Norms

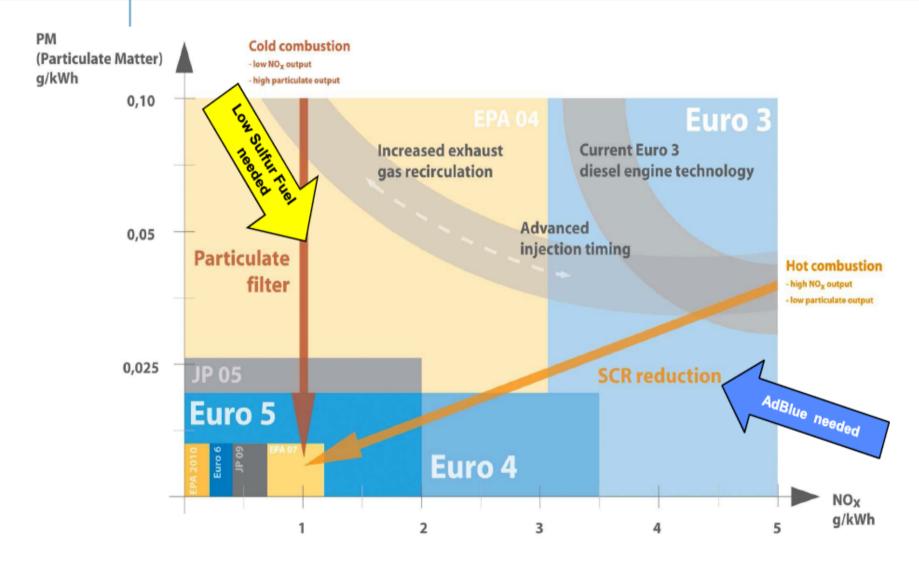
June 16, 10

Engine Expo 2010, Stuttgart, Germany

Evolution of Emission Test Cycles

Legislation / Test Cycle	Bharat Stage I	Bharat Stage II	Bharat Stage III	Bharat Stage IV	Bharat Stage V
R49	\checkmark	\checkmark	-	-	-
ESC	-	-	\checkmark	\checkmark	\checkmark
ETC	-	-	-	\checkmark	\checkmark
ELR	-	-	\checkmark	\checkmark	\checkmark
FAS	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
OBD	-	_	_	OBD-I	OBD-II

•Low Temperature ETC Cycle & On Board Diagnostics introduced for Bharat Stage-IV & Beyond

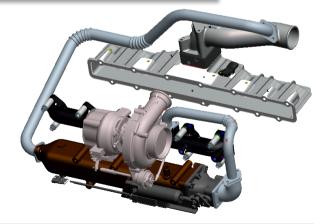

Heavy Duty Diesel Emission Norms

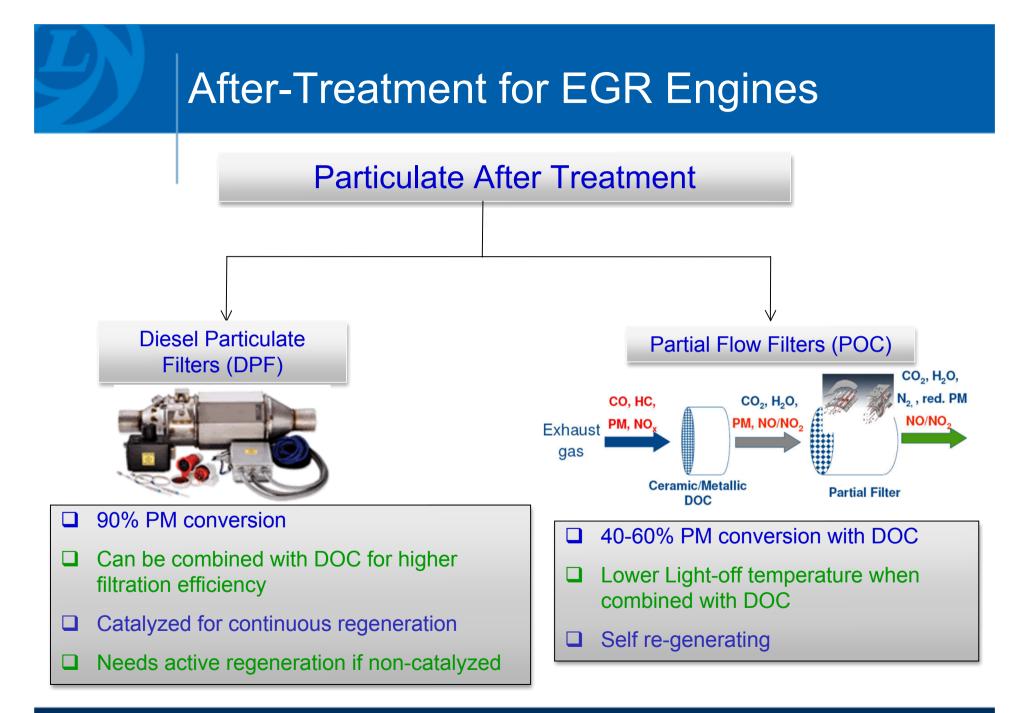
Emission Technology Overview

- □ Ashok Leyland Engines
- Effect on Cooling Requirements
- □ Engine and Vehicle layout
- Performance And Emission

- □ Engine durability
- Oil Requirements & Life
- □ Vehicle running costs
- Feasibility of SCR & EGR for future norms
- □ Summary

Technology Options for Emission Reduction




Engine Expo 2010, Stuttgart, Germany

7

Exhaust Gas Recirculation (EGR)

- In EGR Technology, a portion of the exhaust gas is cooled and recirculated to the oxygen rich intake air
- EGR helps reducing in-cylinder NOx production by reducing maximum instantaneous temperature during Combustion
 - ✓ but increases the PM emissions
- To reduce PM, typically a DPF/DOC+POC is incorporated in the Exhaust system

Selective Catalytic Reduction

□ Selective Catalytic Reduction (SCR) is a method to reduce nitrogen oxides (NOx) outside the cylinder

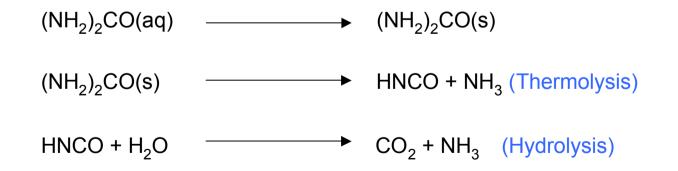
□SCR Engines are operated at advanced injection timings for Soot optimized combustion

■Nitrogen oxides are converted to nitrogen and water on the surface of a catalyst by adding ammonia to the exhaust gas

Reactions

$4NH_3 + 4NO + O_2$	→ 4N ₂ +6H ₂ O
(NO:NO ₂ = 9:1)	

 $2NH_3 + NO + NO_2 \longrightarrow 2N_2 + 3H_2O$


 $4NH_3 + 2NO_2 + O_2 \longrightarrow 3N_2 + 6H_2O$

Source of NH₃ - Urea Solution (Adblue)

Urea Solution

 Urea Solution injected upstream of SCR catalyst, which undergoes thermolysis and hydrolysis to form NH₃

Other Sources of NH₃: Anhydrous Ammonia, Ammonium carbamate (NH₂COONH₄)

June 16, 10

Engine Expo 2010, Stuttgart, Germany

AdBlue Specification

AdBlue

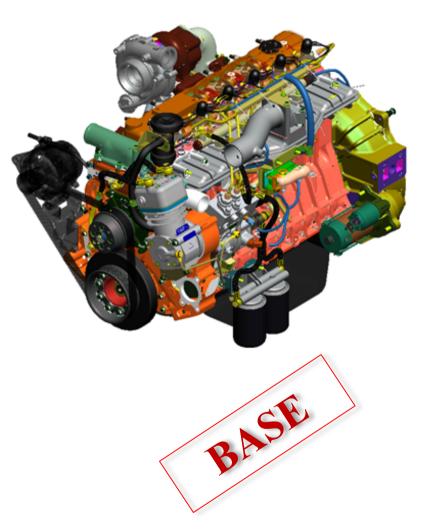
Chemical Formula	CO(NH ₂) ₂	
Molecular Weight	60.06 kg/mole	
Urea Concentration	32.5% by mass (eutectic)	
Freezing Point	-11 ^o C	
Appearance	Colorless	
Hazards	Non-Toxic Non-Explosive	
Density (@20 ^o C)	1087-1092 kg/m ³	
Quality Standard	ISO 22241-1:2006	
Testing Method	ISO 22241-2:2006	
Handling, Transportation and Storing Standard	ISO 22241-3:2008	

Engine Expo 2010, Stuttgart, Germany

Heavy Duty Diesel Emission Norms

Emission Technology Overview

□ Ashok Leyland Engines


- Effect on Cooling Requirements
- □ Engine and Vehicle layout
- Performance And Emission

- **Engine durability**
- Oil Requirements & Life
- □ Vehicle running costs
- Feasibility of SCR & EGR for future norms
- □ Summary

Ashok Leyland BS-3 Base Engine

ENGINE SPECIFICATION

Configuration	6 Cylinder TCIC, Direct Injection	
Bore x Stroke	104 x 113 mm	
Valves per cylinder	2	
Max. Power	152 kW @ 2500 rpm	
Max. Torque	700 Nm @ 1200-1800 rpm	
Fuel Injection System	Gen 2,Common Rail, 1600 bar	
Peak Cylinder Pressure	135 bar	
Emission Norm	Bharat Stage-3	

Ashok Leyland SCR Engine

ENGINE SPECIFICATION

Configuration	6 Cylinder TCIC, Direct Injection	
Bore x Stroke	104 x 113 mm	
Valves per cylinder	2	
Max. Power	152 kW @ 2500 rpm	
Max. Torque	700 Nm @ 1200-1800 rpm	
Fuel Injection System	Gen 2,Common Rail, 1600 bar	
Peak Cylinder Pressure	135 bar	
After-Treatment	NOx Selective Catalytic Reduction Vanadium Based catalyst, without Oxicat & Slip catalyst	
Emission Norm	Bharat Stage-4	

Ashok Leyland EGR Engine

ENGINE SPECIFICATION

Configuration	6 Cylinder TCIC, Direct Injection	
Bore x Stroke	104 x 113 mm	
Valves per cylinder	2	
Max. Power	140 kW @ 2400 rpm	
Max. Torque	700 Nm @ 1200-1800 rpm	
Fuel Injection System	Gen 2,Common Rail, 1600 bar	
Peak Cylinder Pressure	135 bar	
Recirculation	High Pressure Cooled EGR	
After-Treatment	Partial Flow Filter (DOC+POC)	
Emission Norm	Bharat Stage-4	

Engine Expo 2010, Stuttgart, Germany

Heavy Duty Diesel Emission Norms

Emission Technology Overview

□ Ashok Leyland Engines

Effect on Cooling Requirements

- □ Engine and Vehicle layout
- Performance And Emission

- **Engine durability**
- Oil Requirements & Life
- □ Vehicle running costs
- Feasibility of SCR & EGR for future norms
- □ Summary

Effect on Cooling Requirements

SCR

□ Cooling requirement same as BS-3

EGR

 15% Higher heat rejection to coolant due to heat load of recirculated exhaust gas

Higher coolant flow for cooling recirculated exhaust gases

Effect on Cooling Requirements

SCR

□ Cooling requirement same as BS-3

EGR

□ 15~20% Bigger radiator size

□ 15~20% higher fan flow

Engine Expo 2010, Stuttgart, Germany

- Heavy Duty Diesel Emission Norms
- Emission Technology Overview
- □ Ashok Leyland Engines
- Effect on Cooling Requirements
- Engine and Vehicle layout
- Performance And Emission

- **Engine durability**
- Oil Requirements & Life
- □ Vehicle running costs
- Feasibility of SCR & EGR for future norms
- □ Summary

Engine Layout

SCR

Engine Layout

- No additional layout requirement
 - on Engine

EGR

Engine Layout

- Packaging of EGR cooler and EGR valve
 - Oversized EGR Cooler to counter fouling due to soot deposition (f=0.001)
- Heat shield for EGR valve
 - to avoid valve drift due to temperature (if near heat source like exhaust manifold)

Engine Layout

SCR

Engine Layout

- No additional layout requirement
 - on Engine

EGR

Engine Layout

- Routing of EGR pipe to intake manifold
- Larger coolant pump dimensions
- May call for use of Turbocharger
 with asymmetric turbine

Engine and Vehicle Layout

SCR

□ Vehicle Layout

- Additional space on chassis for
 - AdBlue Tank
- Larger silencer with integrated
 SCR catalyst
- Routing of AdBlue pipe from
 Dosing Module
- Additional nozzle and temperature sensors in exhaust pipes

EGR

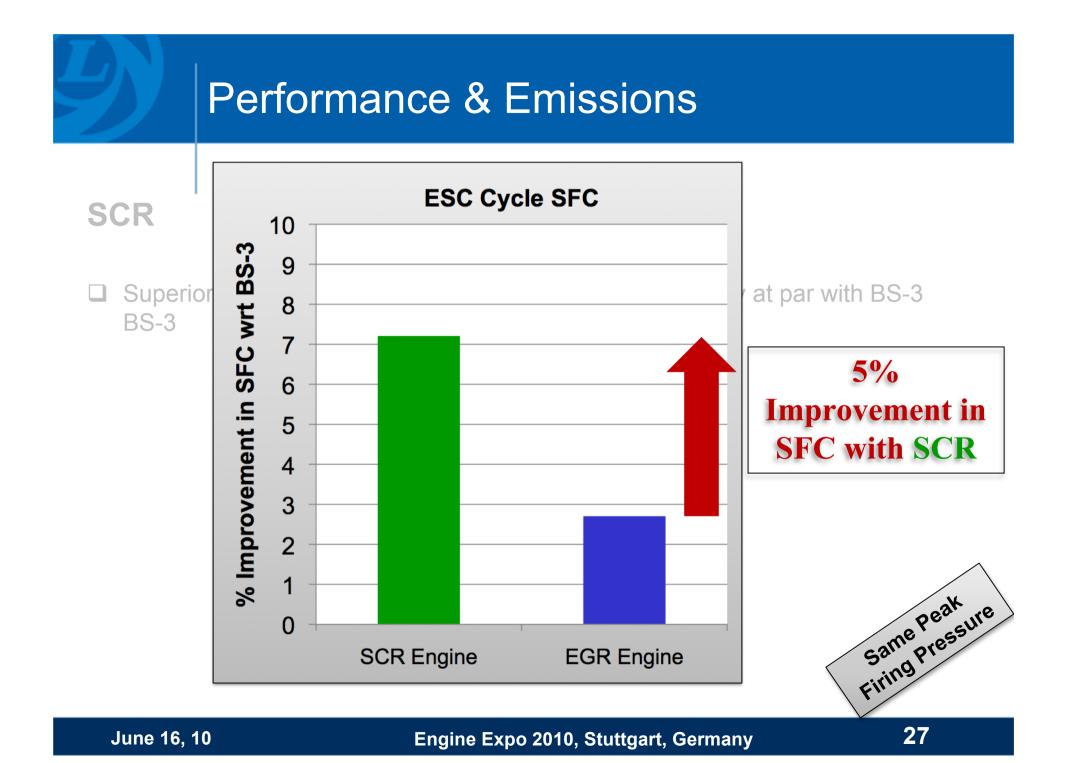
Vehicle Layout

- Additional space for larger radiator/fan
- Packaging space for DPF/Partial filters

June 16, 10

Engine and Vehicle Layout

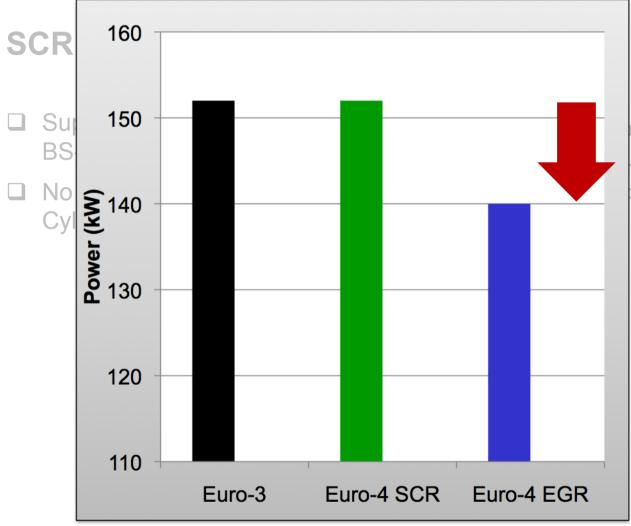
□ For larger engines producing < 20 kW/l or smaller engines < 2 l


- SCR Catalyst needs to be packaged very close to the turbocharger
- Oxidation catalyst required for achieving higher NOx conversion at lower light-off temperatures
- Insulation of exhaust pipes to reduce heat loss due to convection

- Heavy Duty Diesel Emission Norms
- Emission Technology Overview
- □ Ashok Leyland Engines
- Effect on Cooling Requirements
- □ Engine and Vehicle layout
- Performance And Emission

- **Engine durability**
- Oil Requirements & Life
- □ Vehicle running costs
- Feasibility of SCR & EGR for future norms
- □ Summary

Performance & Emissions SCR EGR Superior fuel economy compared to □ Fuel economy marginally better than BS-3 BS-3



SCR

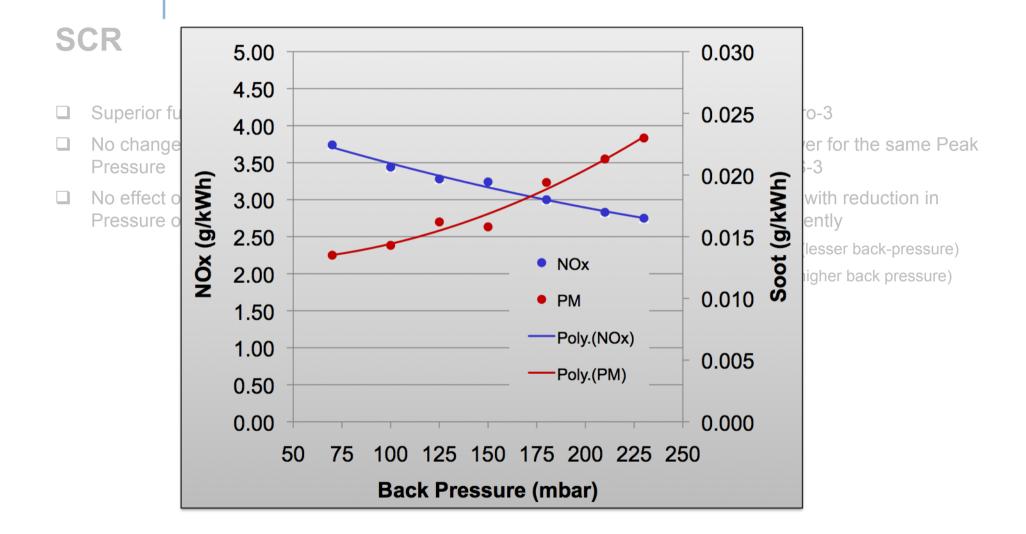
- Superior fuel economy compared to BS-3
- No change in power for the same Peak Cylinder Pressure

EGR

- Fuel economy marginally better than BS-3
 - 15% drop in engine power for the same Peak Cylinder pressure

8% Lesser Power with EGR

my at par with BS-3 op in engine power for the Peak Cylinder pressure

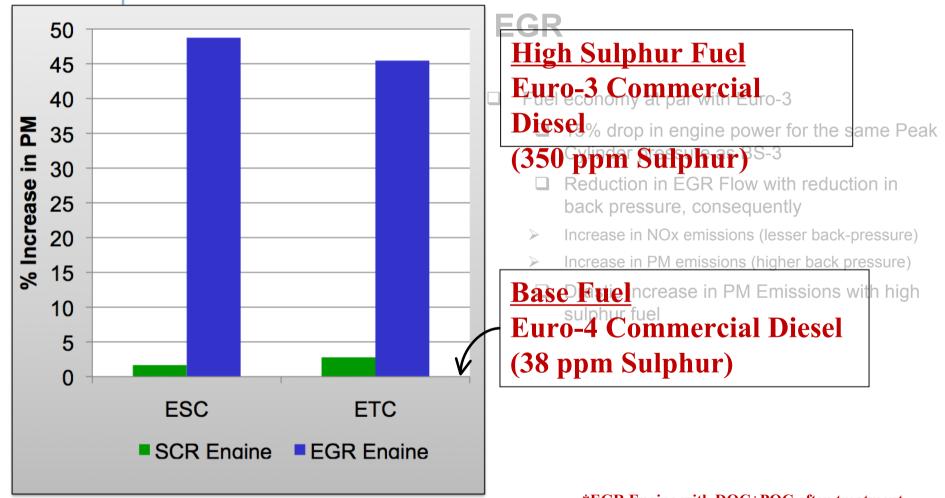


SCR

- Superior fuel economy compared to BS-3
- No change in power for the same Peak Cylinder Pressure
- No effect on Emission with change in Back Pressure of the system

EGR

- Fuel economy marginally better than BS-3
 - 15% drop in engine power for the same Peak Cylinder pressure
 - Reduction in EGR Flow with reduction in back pressure, consequently
 - Increase in NOx emissions (lesser back-pressure)
 - Increase in PM emissions (higher back pressure)



SCR

- Superior fuel economy compared to Euro 3
- No change in power for the same Peak Cylinder Pressure
- No effect on Emission with change in Back Pressure of the system
- Marginal increase in PM emissions with high sulphur fuel

EGR

- □ Fuel economy marginally better than Euro-3
 - 15% drop in engine power for the same Peak Cylinder pressure as BS-3
 - Reduction in EGR Flow with reduction in back pressure, consequently
 - Increase in NOx emissions (lesser backpressure)
 - Increase in PM emissions (higher back)
 - Drastic increase in PM Emissions with high sulphur fuel

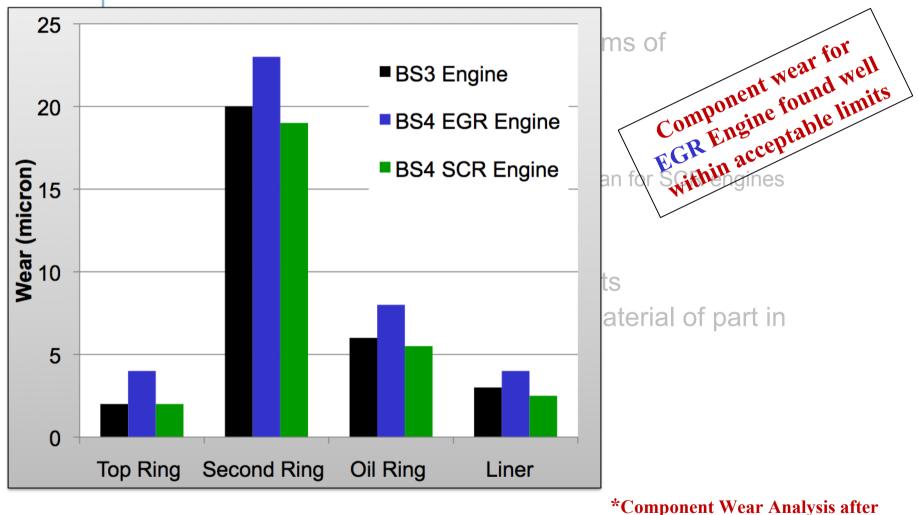
*EGR Engine with DOC+POC after-treatment

Engine Expo 2010, Stuttgart, Germany

33

- Heavy Duty Diesel Emission Norms
- Emission Technology Overview
- □ Ashok Leyland Engines
- Effect on Cooling Requirements
- □ Engine and Vehicle layout
- Performance And Emission

□ Engine durability

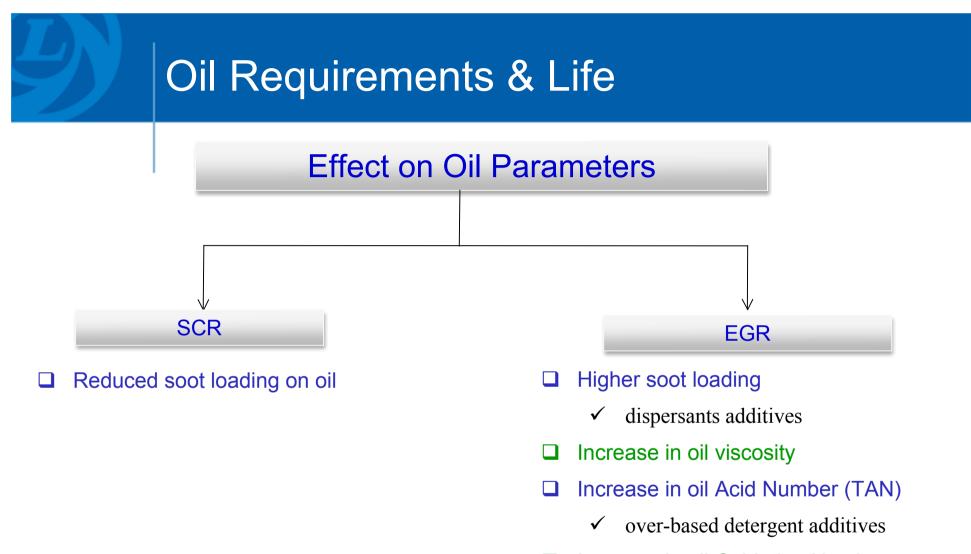

- Oil Requirements & Life
- □ Vehicle running costs
- Feasibility of SCR & EGR for future norms
- □ Summary

Engine Durability

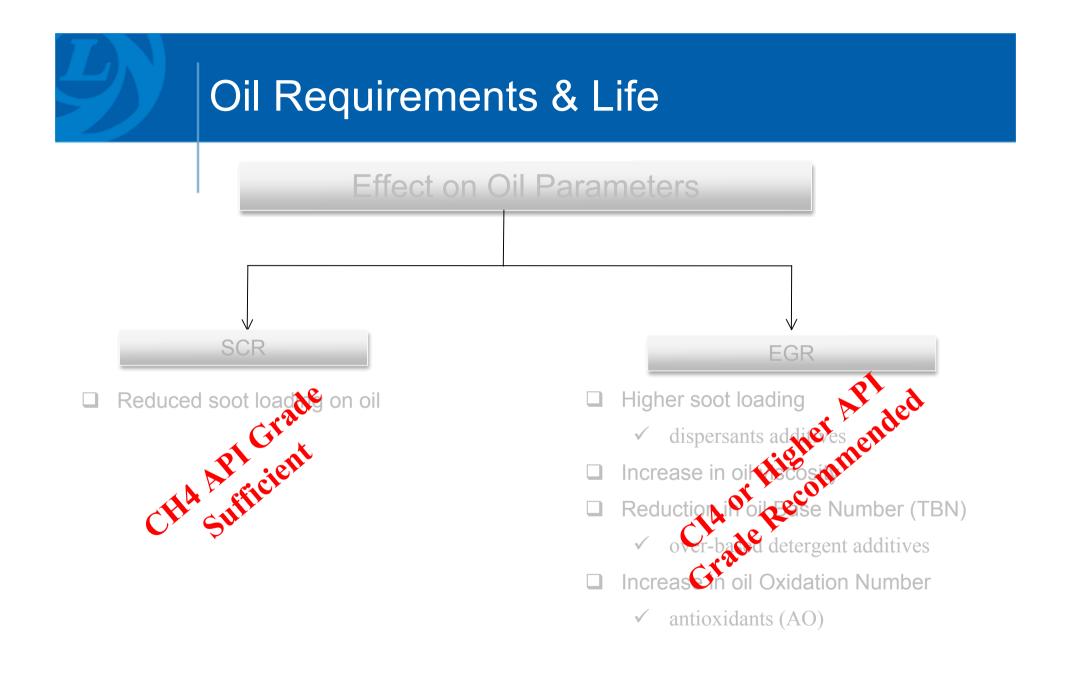
Engine durability can be studied majorly in terms of

- Piston Ring Wear & Liner Wear
 - Liner and ring-pack material
 - Combustion Chemistry
 - o More soot in oil in case of EGR engines than for SCR engines
 - Peak cylinder pressure
 - ≻ Oil Grade
- Wear of Bearings & Valve train components
 - Depends on peak cylinder pressure, material of parts in contact, Oil Grade

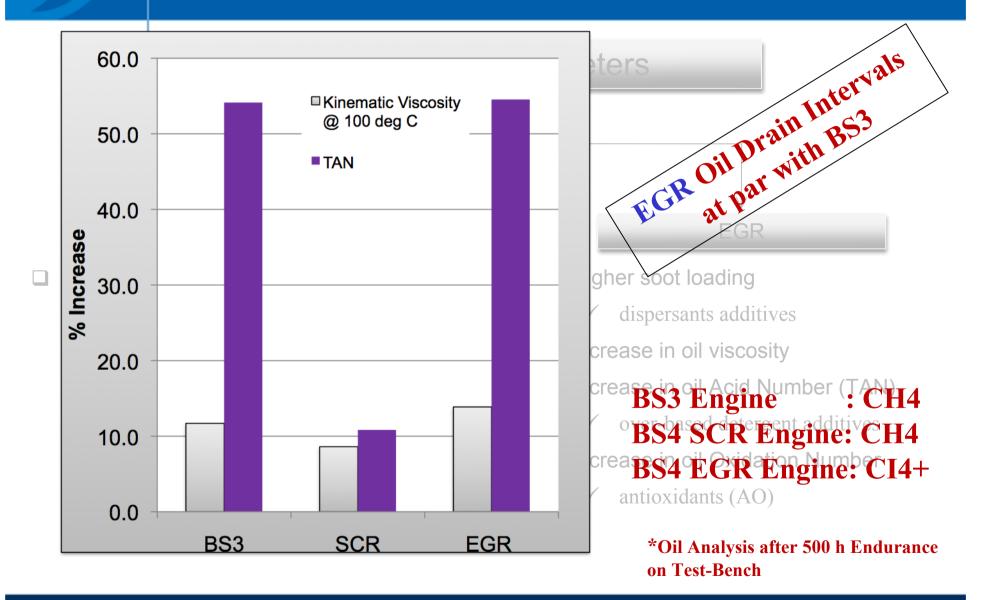
Engine Durability


500 h Endurance on Test-Bench

- Heavy Duty Diesel Emission Norms
- Emission Technology Overview
- □ Ashok Leyland Engines
- Effect on Cooling Requirements
- □ Engine and Vehicle layout
- Performance And Emission


Engine durability

Oil Requirements & Life


- □ Vehicle running costs
- Feasibility of SCR & EGR for future norms
- □ Summary

- Increase in oil Oxidation Number
 - ✓ antioxidants (AO)

Oil Requirements & Life

June 16, 10

Engine Expo 2010, Stuttgart, Germany

- Heavy Duty Diesel Emission Norms
- Emission Technology Overview
- □ Ashok Leyland Engines
- Effect on Cooling Requirements
- □ Engine and Vehicle layout
- Performance And Emission

- **D** Engine durability
- Oil Requirements & Life

□ Vehicle running costs

- Feasibility of SCR & EGR for future norms
- □ Summary

Vehicle Running Cost

□ SCR Operating cost

- Fuel consumption
 - ≻ 6% lower than BS-III engines
 - o (Based on Test data from 5 vehicles in field)

AdBlue consumption

- 5% of engine fuel consumption
 - o (Based on Test data from 5 vehicles in field)


Net operating cost

- 3-4 % lower than BS-III engines
 - (Assuming Cost of AdBlue = 50% of Diesel)

EGR Operating cost

- Fuel consumption
 - ➤ 2% lower than BS-III engines
 - o (Based on Engine Test-Bench data)
- AdBlue consumption
 Nil
- Net operating cost
 - 2 % lower than BS-III engines

Vehicle Running Cost

June 16, 10

Engine Expo 2010, Stuttgart, Germany

- Heavy Duty Diesel Emission Norms
- Emission Technology Overview
- □ Ashok Leyland Engines
- Effect on Cooling Requirements
- □ Engine and Vehicle layout
- Performance And Emission

- **Engine durability**
- Oil Requirements & Life
- □ Vehicle running costs
- Feasibility of SCR & EGR for future norms
- □ Summary

Feasibility of SCR & EGR for future norms

SCR

□ BS-V/ Euro-5 Legislation

- No additional engine structural requirement
- Fuel economy at par with BS-IV Engine
- No additional cooling requirement
- Recalibration of in-cylinder combustion not required
- Oil drain period at par with BS-IV
- With increased dosing and marginally larger catalyst, Euro-5 can be achieved
- Lesser development cost and time

EGR

□ BS-V/ Euro-5 Legislation

- Heavier engine structure to maintain same AF ratio and Power
- Upto 7-8 % loss of fuel economy is expected if only EGR is to be used with full flow DPF
- More load on cooling system due to Higher EGR Rates
- In-cylinder combustion calibration needs to be repeated
- Shorter oil drain intervals due to higher EGR rates, soot loading
- Resizing of DPF, PM-Kat after combustion calibration
- More development cost and time

Feasibility of SCR & EGR for future norms

SCR

OBD-II

- Requirement of Urea quality sensor/NOx sensor for OBD-II is yet to be decided
- OBD Calibration would be costlier due to additional sensors
- Reliability and Cost of NOx sensor
 - Subject to the decision on NOx sensor for the OBD

EGR

OBD-II

- No requirement of Urea quality sensor/NOx sensor for OBD-II
- OBD Calibration can be done by feed-forward algorithm
- Reliability of EGR valve

Feasibility of SCR & EGR for future norms

SCR

□ World Harmonized Cycle (WHC)

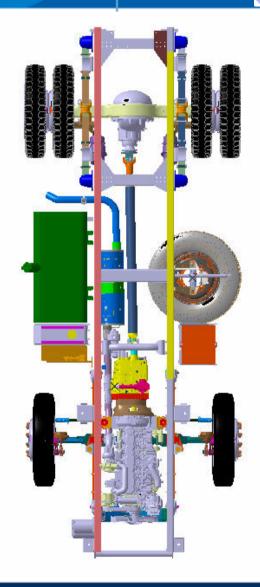
- For meeting low cycle temperature of WHC special low temperature catalyst, Oxidation catalyst would be required
 - If combined with DPF with active regeneration, the catalyst should have capability of withstanding high temperature
- Cost of low temperature catalyst is higher

EGR

□ World Harmonized Cycle (WHC)

Active regeneration of DPF would be required

 Active regeneration would lead to 1-2% poor fuel economy


- Heavy Duty Diesel Emission Norms
- Emission Technology Overview
- □ Ashok Leyland Engines
- Effect on Cooling Requirements
- □ Engine and Vehicle layout
- Performance And Emission

- **Engine durability**
- Oil Requirements & Life
- □ Vehicle running costs
- Feasibility of SCR & EGR for future norms
- □ Summary

Summary

- SCR gives upto 5% Superior fuel economy compared to EGR (for BS-4)
- For same structural strength Engine power density reduces with EGR
- □ Lower grade oil can be used for SCR Engines
- Equal oil drain intervals can be achieved for EGR with API CI4 Grade oils (for BS-4)
- □ SCR catalyst is tolerant to High Sulphur Diesel
 - Ideal for countries with dual norms
- Engine Durability for both SCR & EGR are comparable
- SCR is cost competitive for larger engines
 - ✓ Cost can be recovered in one year for a truck running 700 km/day
- Engines with EGR ask for complicated modifications to the engine design than for SCR engines
- SCR is more promising for Euro-5 and beyond

Thank You

Engine Expo 2010, Stuttgart, Germany