

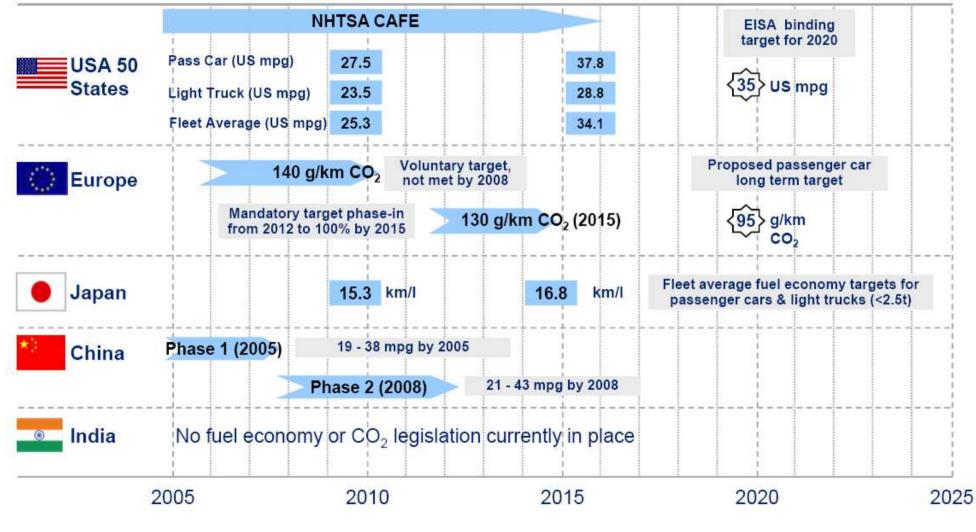
The Ricardo low carbon roadmap – The long way to CO₂ reduction

Engine Expo 2010

Dr. Martin Düsterhöft, Dr. David Gagliardi

Stuttgart, 23rd June 2010

Background and key issues


- Methodology
- The Ricardo Low Carbon Roadmap Technology steps
- Purchase and ownership costs
- Conclusions

Background and key issues

Most Countries adopting low carbon targets for road transport, emphasis on energy security and climate change

Fuel economy / CO₂ legislation for light duty vehicles

Source: Ricardo EMLEG database

Current volume-weighted average fleet emissions in Europe per manufacturer and country

Average new car emissions in EU15 (g/km)					Manufacturer	2008	2009	
Year Austria	2008 158.1	2007 162.9	2000 168.0	% ch '08 vs '07 -2.9%	% ch '08 vs '00 -5.9%	Fiat	133,7	127,8
Belgium Denmark	147.8 146.4	152.8 159.8	166.5 175.7	-3.3% -8.4%	-11.2% -16.7%	Toyota	144,9	130,1
Finland France Germany	162.9 140.1 164.8	177.3 149.4 169.5	181.0 163.6 182.0	-8.1% -6.3% -2.8%	-10.0% -14.4% -9.5%	Peugeot	138,1	133,6
Greece Ireland Italy	160.8 156.8 144.7	165.3 161.6 146.5	180.3 161.3 155.1	-2.7% -3.0% -1.3%	-10.8% -2.8% -6.7%	Renault	142,7	137,5
Luxembourg Netherlands	159.5 157.9	165.8 164.8	176.7 174.2	-3.8% -4.2%	-9.7% -9.4%	Citroen	142,4	137,9
Portugal Spain Sweden	138.2 148.2 173.9	144.2 153.2 181.4	169.2 159.2 200.0	-4.2% -3.3% -4.1%	-18.3% -6.9% -13.1%	Ford	147,8	140,0
UK EU15	158.2 153.5	164.7 158.7	185.4 172.2	-4.0% -3.3%	-14.7% -10.9%	Opel / Vauxhall	151,1	148,9

Source: SMMT Annual CO2 Report

- Europe's cleanest model was in 2009 the hybrid Toyota Prius, with 95,6 g/km CO2
- The car manufacturers have reduced the volumeweighted average CO₂ emissions by 7.9 g/km in 2009

Peugeot	138,1	133,6
Renault	142,7	137,5
Citroen	142,4	137,9
Ford	147,8	140,0
Opel / Vauxhall	151,1	148,9
BMW	160,6	150*
Volkswagen	158,8	150,4
Audi	n/a	160,9
Mercedes	185,0	176,4
ource: IATO Dynamics: *Source: F		

Source: JATO Dynamics; *Source: BMW

Background and key issues

Methodology

- The Ricardo Low Carbon Roadmap Technology steps
- Purchase and ownership costs
- Conclusions

Methodology

The study is based on a basic "rule": each development step must be a robust, mass-market step forward

C-segment vehicle (e.g. Ford Focus, Opel Astra, VW Golf)

Close to the average size for Europe

Each technology step must be

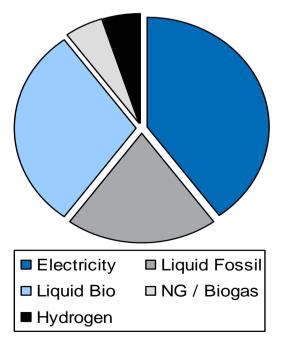
- Volume product of European relevance
 - Capable of 5% market within 5 years of introduction
- A step forward in terms of well-to-wheel carbon emissions
- A fully functional vehicle at its given CO₂ emission
 - Performance, trailer tow capability, passenger & luggage capacity, re-fuel range
- Validated wherever possible from real production or prototype vehicles
 - With appropriate corrections for vehicle size
 - And an assumption of small incremental improvement to the state of the art, for products existing further in the future

Methodology

Known "hard points" such as legislation, and more speculative long term forecasts, were used to frame the technology steps

2020 (Driven by CO₂ legislation)

- 130g/km, 95g/km EU new car fleet
- Limited segment down-shifting
 - Perhaps 20%, limited by space needs
 - But more buyers choose a low carbon option WITHIN their segment


Significant role for conventional technologies

- Diesels remain as best-in-class for CO₂
- Second generation advanced Gasoline engines could close the gap being cheaper
- 12 volt start/stop ubiquitous
- Significant rise in mass-market highvolt electrification starting to happen
 - 10-20% EV/PHEV/HEV possible
 - But <5% necessary for 130g/km

2050 (Speculative, Peak Oil & GHG driven)

 Substantial shift to new energy vectors, with electricity being dominant

> Road Transport Energy Vectors 2050 Ricardo projection

Methodology

Aggressive assumptions were made for rising energy prices and greening of energy supplies

- Fuel price scenario based on \$70/bbl in 2009, rising to \$200/bbl in 2025
- Progressive "greening" of energy vectors
 - Diesel with 1st & 2nd gen bio-fuel, up to 15% (limited by supply and demand from other sectors)
 - Electricity in line with EU SET-plan (Average EU-25 mix assumed)
 - Hydrogen to extent needed to compete with prior step (result broadly in line with European targets)

- Background and key issues
- Methodology
- The Ricardo Low Carbon Roadmap Technology steps
- Purchase and ownership costs
- Conclusions

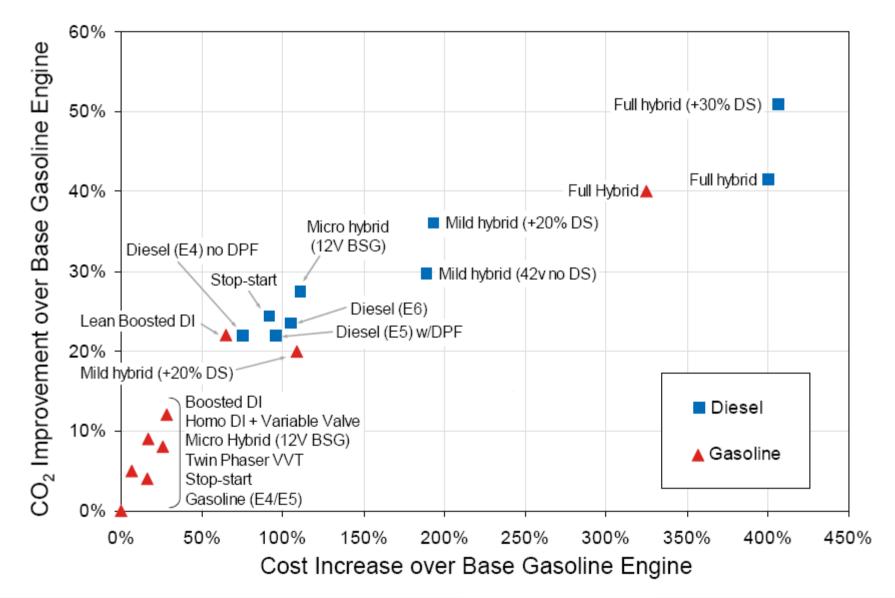
An accelerating pace of incremental improvements to parasitic losses, weight and drag means that <100g/km is possible at 12v

	Technologies	Energy Chain	CO ₂ T2W	CO ₂ W2W
Step 1: Optimis Diesel with Stop	Start-stop, smart charging & cooling, reduced weight, rolling resistance and aerodynamic drag,	Diesel B5 Gen 1	99g/km	109g/km
	optimised calibration			

2010

2010

- Baseline: Typical C-segment Diesel economy model -119g/km T2W, 132g/km W2W
- VW Golf, Audi A3, Volvo C30 already achieve 99g/km
 - All at 12v, with start-stop, smart charging, intelligent cooling, longer gear ratio
- **Ricardo roadmaps targeting 100g/km Gasoline and** 85g/km Diesel (C-segment) for research – low cost 12v or "12+X" systems



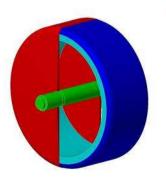
Improved Gasoline engines will remain cheaper than current Diesel engines

The Ricardo Low Carbon Roadmap – Technology steps

Hybrids will benefit from improvements to 12v vehicles, and from better high voltage systems: giving lower CO₂ than seen in the past

5			Technologies	Energy Chain	CO ₂ T2W	CO ₂ W2W
	2015	Step 2: 6kW Diesel Mild Hybrid	1.2I engine, 6kW ISG motor, Li-Ion	Diesel B8 Gen 1 & 2	84g/km	90g/km
	2020	Step 3: 20kW Diesel Full Hybrid	1.2I engine, DCT 20kW full hybrid	Diesel B12 Gen 1 & 2	69g/km	72g/km

Mild Hybrids: A familiar recipe, but improved – 84g/km at the tailpipe


- Engine downsized to 1.2I 3cyl, same 80kW
- 6kW electrical machine probably belt drive
- Smart, low loss cooling and lube systems, fast warm-up, 5% lighter car
- "12+X" VRLA + super-capacitor energy storage or Li-Ion
- In reality, a mix of Diesel (<85g/km) and Gasoline (<100g/km)

Full Hybrids: A mix of solutions suiting the application, ultra low 69g/km

- Same engine, larger 20kW electrical machine clutched to engine and DCT
- Further powertrain and vehicle improvements, another 5% lighter
- Other solutions (e.g. Gasoline-fuelled) will co-exist

Flywheels could be an enabling technology!

The Ricardo Low Carbon Roadmap – Technology steps

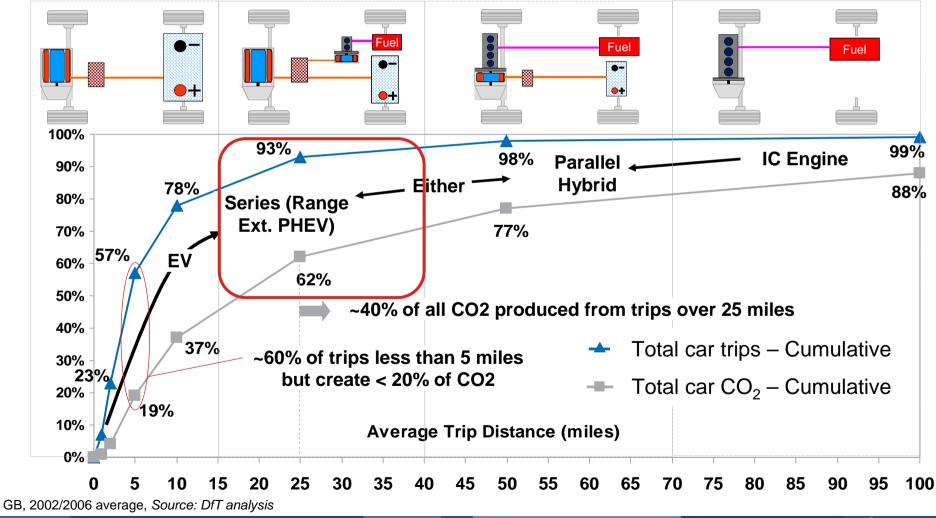
Electrification offers an immediate W2W improvement (in urban use at least), but configuration must be tailored to duty cycle

	_		Technologies	Energy Chain	CO ₂ T2W	CO ₂ W2W
2025	Step 4: Plug Range Exte		20km EV range via enlarged battery	Diesel B15 G2 Elec CO ₂ –6%	52g/km	63g/km*
					* Assumption: 25°	% electricity from grid

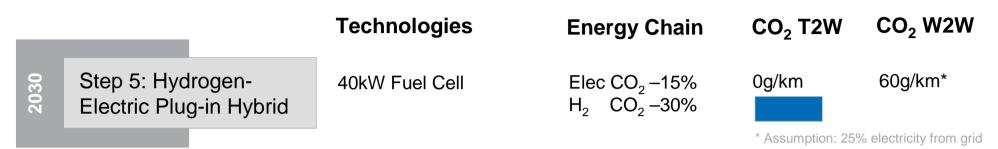
Electrification: PHEV retains full vehicle functionality, benefits CO₂

- Vehicle as before, extra 20km EV range at €3-400/kWh
- 406g CO₂/kWh EU grid (ref EU SET-plan) gives urban 44g/km on electricity
- Majority of Full Hybrids may be plug-in by this time
- Most are likely to be cheaper gasoline series drive but Diesel / Parallel is most efficient and functional "all-rounder"

In earlier stage the introduction of Range Extender will increase the market acceptance of EVs


- Short distances represent conventionally urban trips, which are the natural destination of most of electric cars
- It is possible to resize the expensive battery packs to lower pure electric driving ranges, covering unusual longer trips with a small and cheap combustion engine aimed to recharge the batteries

The Ricardo Low Carbon Roadmap – Technology steps


Electric vehicles limited to city use due to battery size/cost - Range anxiety addressed by Series PHEV – IC/Parallel hybrid for highway

- Most efficient powertrain configuration is a function of application
- EV likely to be more efficient for city use but series electric range extender less efficient than parallel hybrid for highway/motorway travel

Hydrogen remains the most practical non-fossil long-range energy vector, but the PHEV sets a high bar for "green" Hydrogen

Hydrogen: Synergistic long-term PHEV range-extending fuel

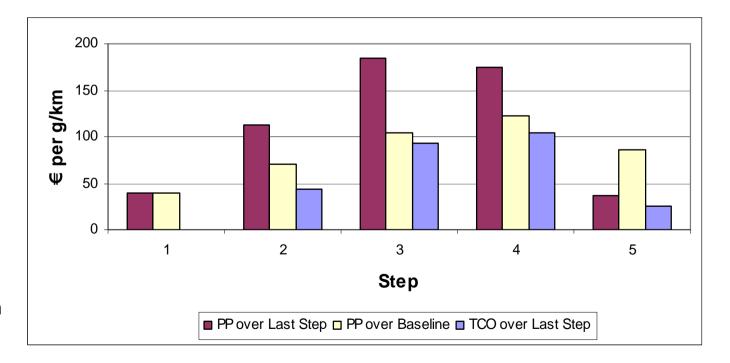
- Electricity will still be limited as a long-range fuel
 - Battery mass & cost: 500km range requires a 900kg, €20-30k battery
 - Fast refuelling: circa 300kW required for 10 minute charge, or cumbersome swap system
 - No proven concepts with full C-segment functionality unlike Hydrogen
- Hydrogen vehicle derived from ICE-based Series-PHEV, with substitution of Fuel Cell (assumption in this study: 25% only electric driving)
- Electricity from 2030 EU grid @ 366g CO₂/kWh, gives urban 39g/km
- 30% "greener" Hydrogen gives 67g/km on NEDC (vs 69 for Diesel HEV)
- Plug-in function reduces dependency on Hydrogen infrastructure
 - Fuelling stations concentrated on highways, trunk routes & transport nodes; re-charging at home, workplace & municipal car parks

The steps show progressive reduction in tailpipe and well-to-wheel CO_2 – and indicate how "green" a Hydrogen supply needs to be

		Technologies	Energy Chain	CO ₂ T2W	CO ₂ W2W
0	Stop 1: Optimized 12v	Start Stop, smart	Diesel B5	99g/km	109g/km
2010	Step 1: Optimised 12v Diesel with Stop/Start	charging & cooling	Gen 1	999/km	
2015	Step 2: 6kW Diesel Mild Hybrid	1.2I engine, 6kW ISG motor, Li-Ion	Diesel B8 Gen 1 & 2	84g/km	90g/km
2020	Step 3: 20kW Diesel Full Hybrid	1.2I engine, DCT 20kW full hybrid	Diesel B12 Gen 1 & 2	69g/km	72g/km
2025	Step 4: Diesel-Electric Plug-in Hybrid	20km EV range via enlarged battery	Diesel B15 G2 Elec CO ₂ –6%	52g/km	63g/km
2030	Step 5: Hydrogen- Electric Plug-in Hybrid	40kW Fuel Cell	Elec $CO_2 - 15\%$ H ₂ CO ₂ - 30%	0g/km	60g/km

- Background and key issues
- Methodology
- The Ricardo Low Carbon Roadmap Technology steps
- Purchase and ownership costs
- Conclusions

Even with aggressive fuel price and low depreciation, analysis shows rising costs for high voltage and hydrogen systems



- Purchase price estimated from bill-of-materials and future component costs
 - Basis 100,000 units p.a.
- Total Cost of Ownership includes fuel, depreciation, interest on capital, maintenance

Comments

- Mild and Full hybrids show increased cost – though fiscal incentives and fleetaverage penalties would tip the case
- Fuel Cell systems appear to offer a lower cost increment

 but ONLY if unproven cost-down can be realised

- Background and key issues
- Methodology
- The Ricardo Low Carbon Roadmap Technology steps
- Purchase and ownership costs
- Conclusions

Conclusions

The evolutionary electrification principle remains valid for mass markets, though disruptive niches will gain in significance

- Pace and impact of cumulative detail improvements to the conventional ICE has increased
 - And these can offer mainstream solutions to current legislation
- Electrification technologies remain expensive, even in a high fuel price scenario
 - Fiscal incentives can tip the balance in a receptive market
- The Plug-in Hybrid is a significant step
 - Offers a step to different types of range-extending powertrain
 - Early stages of market do not require much infrastructure
- Hydrogen remains a promising long term fuel
 - But fuel cell cost-down needs to be realised
 - And Hydrogen supply needs to be "greened" as part of integrated energy policy
- There will be Enablers
 - Now: Ultra-downsized Gasoline engines competing with Diesel
 - Next: Kinetic (flywheel) hybrids offering half the cost per unit benefit
 - Then: Breakthroughs in electricity or hydrogen storage or something else?

Thank you for your interest

