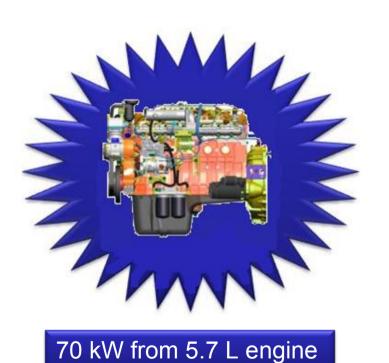


Advanced Downsizing Techniques Applied to a heavy Duty Diesel Engine

Deputy Manager Engine R&D

Contents


- Downsizing concept and definition
- Advantages of downsizing
- Base Engine Specification
- Target Engine Specification
- Techniques adopted to improve power density
- Comparison
- Future Trends

Contents

- Downsizing concept and definition
- Advantages of downsizing
- Base Engine Specification
- Target Engine Specification
- Techniques adopted to improve power density
- Comparison
- Future Trends

Downsizing- A Concept

- Downsizing is increasing power density of engines
 - Generating more power for the same engine displacement.
 - E. g. Increasing the power of 5.7 L engine from 70 kW to 165 kW

165 kW from 5.7 L engine

22-06-2010

- Reducing displacement of the engine to generate same power.
 - e. g., Reducing the engine displacement from 5.7 L to 3.8 L to generate 70 kW

70 kW from 5.7 L engine

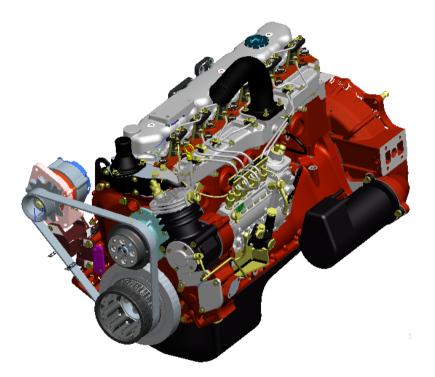
• Downsizing is often presented as a new strategy

- Engines have been progressively downsized since the beginning of automotive industry, step by step,
 - depending on technologies availability.

22-06-2010

Downsizing – concept and definition

- Advantages of downsizing
- Base Engine Specification
- Target Engine Specification
- Techniques adopted to improve power density
- Comparison
- Future Trends


Advantages of Downsizing

- Pumping losses reduction : work done to move air in and out of the cylinder
 - Less total volume swept on each engine per kilometer
 - Higher average load on driving cycle (higher average intake pressure)
 - Lower energy consumption per rotation (reduction of moving parts' speed)
- Gas-to-wall heat transfer reduction
 - Reduced internal surface area
- Friction losses reduction
 - Lesser moving parts (in case of reduction of engine displacement)
 - Reduction Friction Power as a percentage of Indicated power
- Reduces concept-to-market time for new engine
- Cost involved is less than developing a new engine platform

- Downsizing concept and definition
- Advantages of downsizing
- Base Engine Specification
- Target Engine Specification
- Techniques adopted to improve power density
- Comparison
- Future Trends

Base Engine Specification

Configuration	6 Cylinder NA, Direct Injection	
Bore x Stroke (mm)	104 x 113	
Valves per cylinder	2	
Max. Power	70 kW @ 2400 rpm	
Max. Torque	320 Nm @ 1800 rpm	
Fuel Injection System	Plunger type Jerk pump, 600 bar	
Peak Cylinder Pressure	105 bar	
Emission Norm	Pre Euro-1	

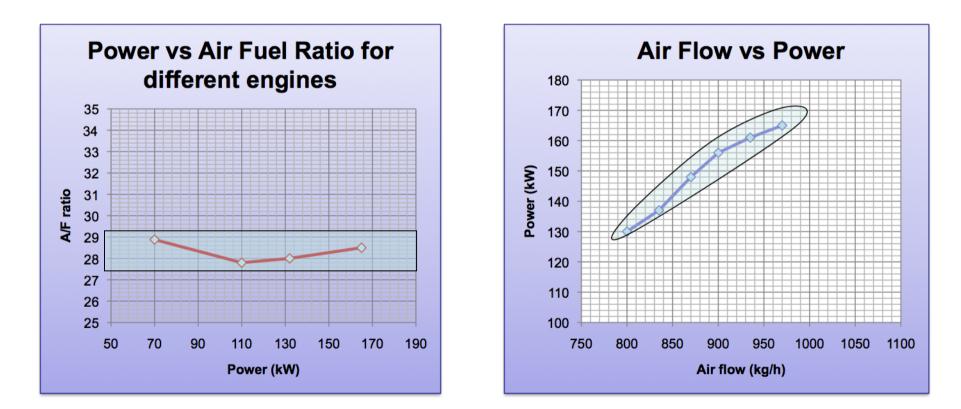
- Downsizing concept and definition
- Advantages of downsizing
- Base Engine Specification
- Target Engine Specification
- Techniques adopted to improve power density
- Comparison
- Limits of Downsizing
- Future Trends

Target Engine Specification

ENGINE SPECIFICATION Configuration 6 Cylinder TCIC, Direct Injection Bore x Stroke (mm) 104 x 113 Valves per cylinder 2 Max. Power 165 kW at 2500 rpm Max. Torque 800 Nm at 1400-1900 rpm **Fuel Injection** Gen 2,Common Rail, 1600 bar System Peak Cylinder 140 bar Pressure India, Bharat Stage-4 (Euro IV) **Emission Norm**

- Downsizing concept and definition
- Advantages of downsizing
- Base Engine Specification
- Target Engine Specification
- Techniques adopted to improve power density
- Comparison
- Limits of Downsizing
- Future Trends

- Essentially power increase is dependent upon fuel quantity
- Consequentially
 - Increase Air flow
 - Increase Peak Firing Pressure and thermal stresses Capability


- Increase Air flow
 - Turbocharging
 - Intercooling
- Increase Peak Firing Pressure and thermal stresses Capability
 - Cylinder block
 - Connecting rods
 - Crankshaft
 - Cylinder head gasket
 - Cylinder head bolt
 - Lubrication system
 - Cooling pump
 - Viscous damper
 - Cylinder liners

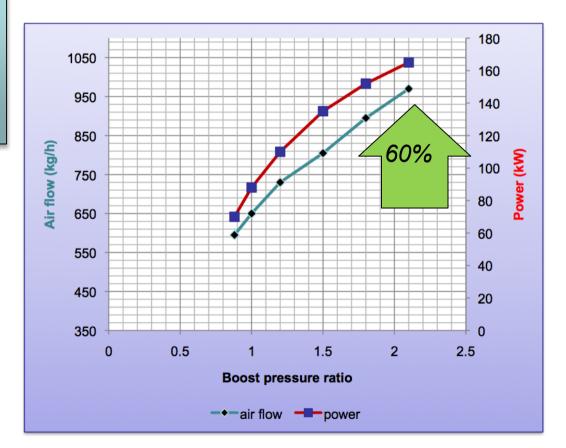
- Increase Air flow
 - Turbocharging
 - Intercooling
- Increase Peak Firing Pressure and thermal stresses Capability
 - Cylinder block
 - Connecting rods
 - Crankshaft
 - Cylinder head gasket
 - Cylinder head bolt
 - Lubrication system
 - Cooling pump
 - Viscous damper

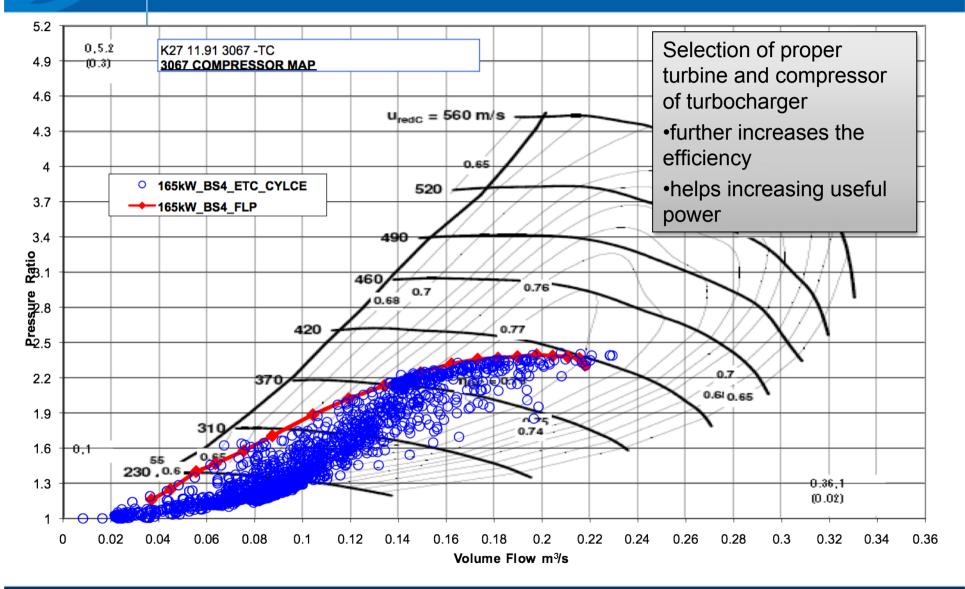
Cylinder liners

Effect of Air Flow

- To maintain λ (excess air ratio) about 1.8
 - Air-Fuel ratio has to be between 27 to 29
 - Increase air to achieve higher power density

TurbochargingIntercooling

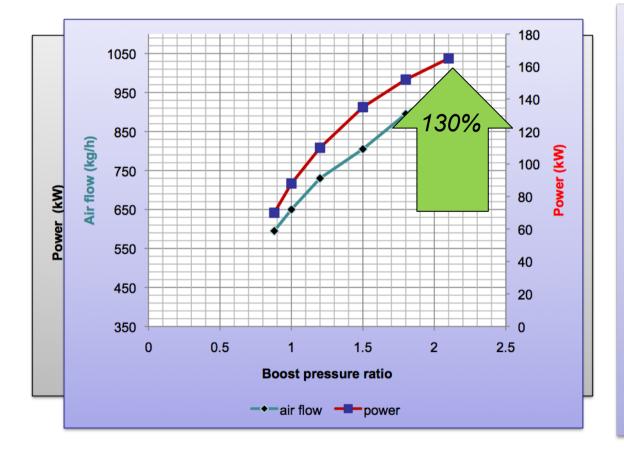



TurbochargingIntercooling

Turbocharging

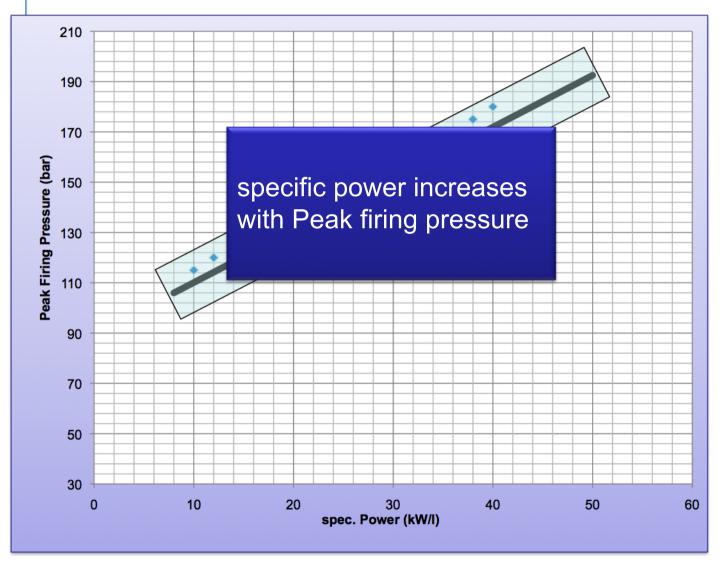
- a compressor driven by turbine: forces more air into the cylinder
- increased air flow allows higher fuel flow for combustion for constant Air-Fuel Ratio of 27~29

Turbocharging



22-06-2010

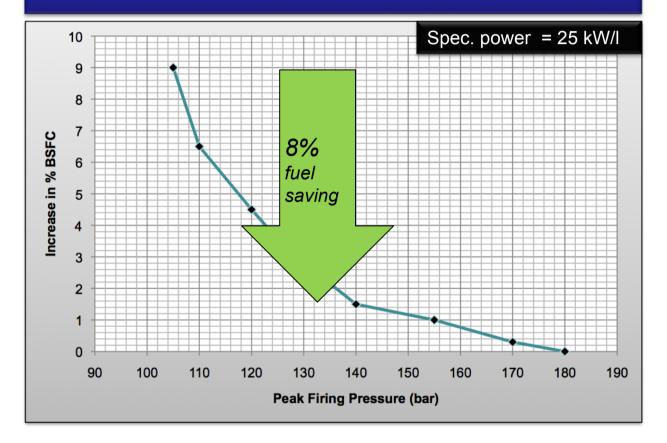
TurbochargingIntercooling


Intercooling

- Cools charged air to increase intake air density
- Increases mass of air flow to the cylinder
- increase the overall volumetric efficiency of the induction system
- Aids combustion of more fuel and produce more power for the same volume of the cylinders

- Increase Air flow
 - Turbocharging
 - Intercooling
- Increase Peak Firing Pressure and thermal stresses Capability
 - Cylinder block
 - Connecting rods
 - Crankshaft
 - Cylinder head gasket
 - Cylinder head bolt
 - Lubrication system
 - Cooling pump
 - Viscous damper
 - Cylinder liners

Effect of Peak Firing Pressure Capability



22-06-2010

Effect of Peak Firing Pressure Capability

• Effect of peak firing pressures(PFP) on BFSC

• Helped us decide target PFP as 140 bar

Increasing Peak Firing Pressure and Thermal Stresses Capability

- Cylinder block
- Connecting rods
- Crankshaft
- Cylinder head gasket
- Cylinder head bolt
- Lubrication system
- Cooling pump
- Viscous damper
- Cylinder liners

Increasing Peak Firing Pressure and Thermal Stresses Capability

- Cylinder block
- Connecting rods
- Crankshaft
- Cylinder head gasket
- Cylinder head bolt
- Lubrication system
- Cooling pump
- Viscous damper
- Cylinder liners

Cylinder Block

Cylinder block	unit	Base engine	Target Engine
PFP capability	bar	105	140
Outer shape		-	Ribs added for strength and noise reduction
Material		Grey cast iron	Higher grade Cast Iron
Main Journal width		-	Increased by 5%

22-06-2010

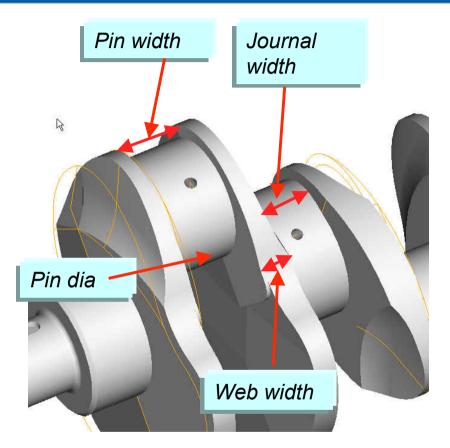
Increasing Peak Firing Pressure and Thermal Stresses Capability

Cylinder block

- Connecting rods
- Crankshaft
- Cylinder head gasket
- Cylinder head bolt
- Lubrication system
- Cooling pump
- Viscous damper
- Cylinder liners

Connecting Rods

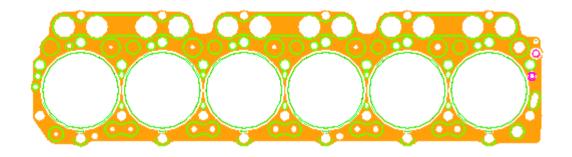
Connecting Rods	unit	Base engine	Target Engine
PFP capability	bar	105	140
Trapezoid angle		-	increased
Con-rod big end diameter	mm	-	increased
Material upper bearing shell		3 Layer	Special coating


Increasing Peak Firing Pressure and Thermal Stresses Capability

- Cylinder block
- Connecting rods
- Crankshaft
- Cylinder head gasket
- Cylinder head bolt
- Lubrication system
- Cooling pump
- Viscous damper
- Cylinder liners

Crankshaft

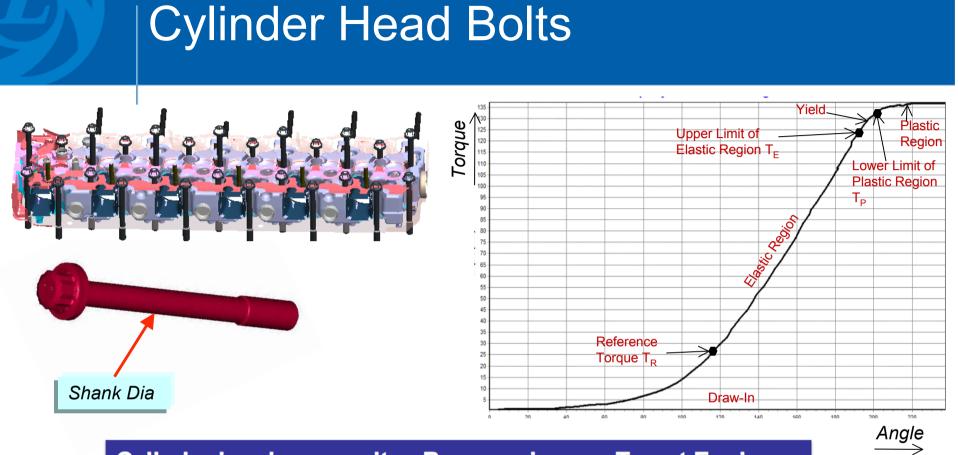
Crankshaft	Unit	Base engine	Target Engine
PFP capability	bar	105	140
Main journal width	mm	-	Reduced
Pin width	mm	-	Reduced
Pin diameter	mm	-	increased
Web width	mm	-	5% increased



22-06-2010

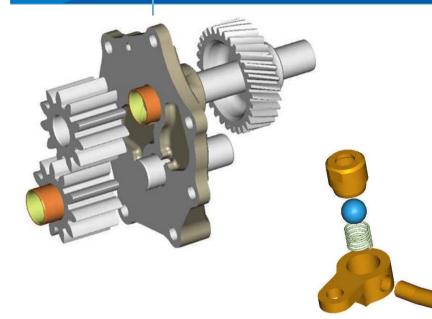
Increasing Peak Firing Pressure and Thermal Stresses Capability

- Cylinder block
- Connecting rods
- Crankshaft
- Cylinder head gasket
- Cylinder head bolt
- Lubrication system
- Cooling pump
- Viscous damper
- Cylinder liners


Cylinder Head Gasket

Cylinder head gasket	unit	Base engine	Target Engine
PFP capability	bar	105	140
Туре		composite soft gasket	Multi-layer (3 layer) steel gasket

Increasing Peak Firing Pressure and Thermal Stresses Capability

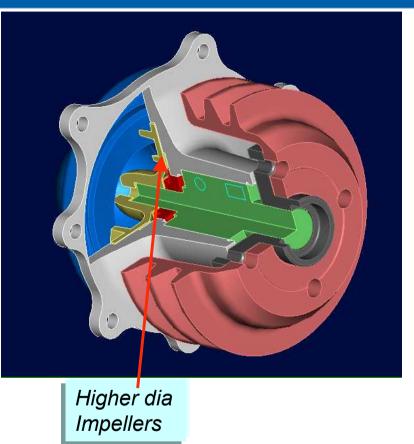

- Cylinder block
- Connecting rods
- Crankshaft
- Cylinder head gasket
- Cylinder head bolt
- Lubrication system
- Cooling pump
- Viscous damper
- Cylinder liners

Cylinder head bolts	unit	Base engine	Target Engine
PFP capability	bar	105	140
Shank diameter	mm	-	reduced
Tightening type		Torque	Torque + angle

- Cylinder block
- Connecting rods
- Crankshaft
- Cylinder head gasket
- Cylinder head bolt
- Lubrication system
- Cooling pump
- Viscous damper
- Cylinder liners

Lubrication System

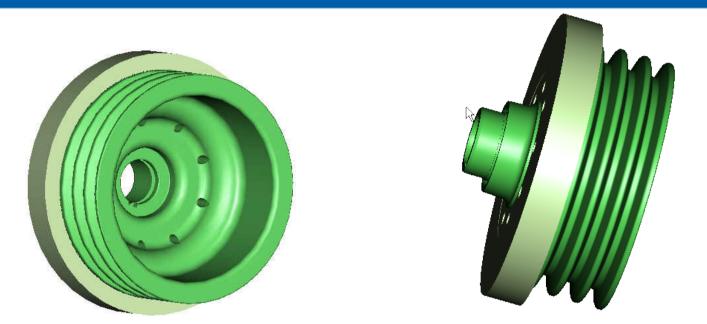
- Oil pump capacity increased by 34%
- Introduction of Piston cooling nozzle reduced piston temperature by 30 degC


Lubrication System	unit	Base engine	Target Engine
PFP capability	bar	105	140
Nº of plates(oil cooler)		-	Increased by 3
Heat dissipation	kW	-	30% improved

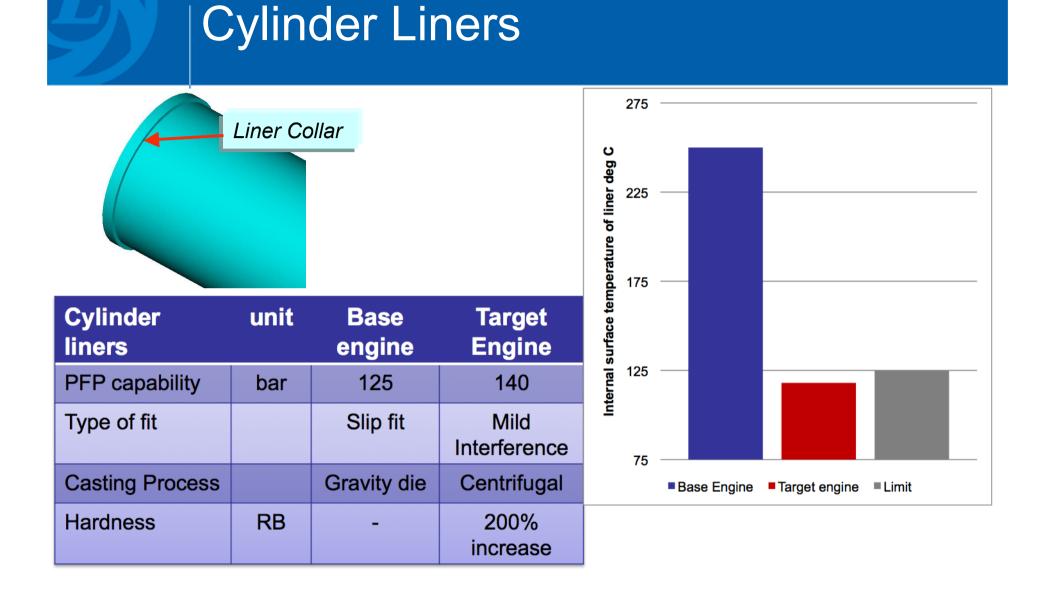
•

- Cylinder block
- Connecting rods
- Crankshaft
- Cylinder head gasket
- Cylinder head bolt
- Lubrication system
- Cooling pump
- Viscous damper
- Cylinder liners

Cooling Pump

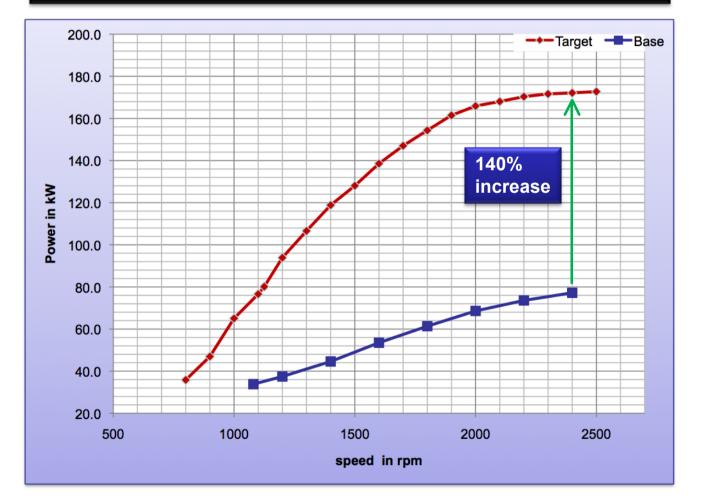

Cooling Pump	unit	Base engine	Target Engine
Impeller diameter	mm	85	100
Flow rate	lpm	-	100% increase
Flow Head	m	-	67% increase

- Cylinder block
- Connecting rods
- Crankshaft
- Cylinder head gasket
- Cylinder head bolt
- Lubrication system
- Cooling pump
- Viscous damper
- Cylinder liners


22-06-2010

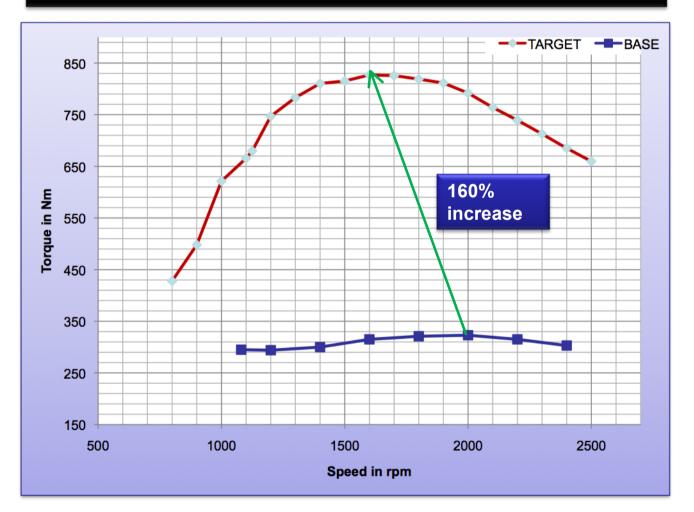
Damper	unit	Base engine	Target Engine
PFP capability	bar	105	140
Туре		Rubber	Viscous

- Cylinder block
- Connecting rods
- Crankshaft
- Cylinder head gasket
- Cylinder head bolt
- Lubrication system
- Cooling pump
- Viscous damper
- Cylinder liners



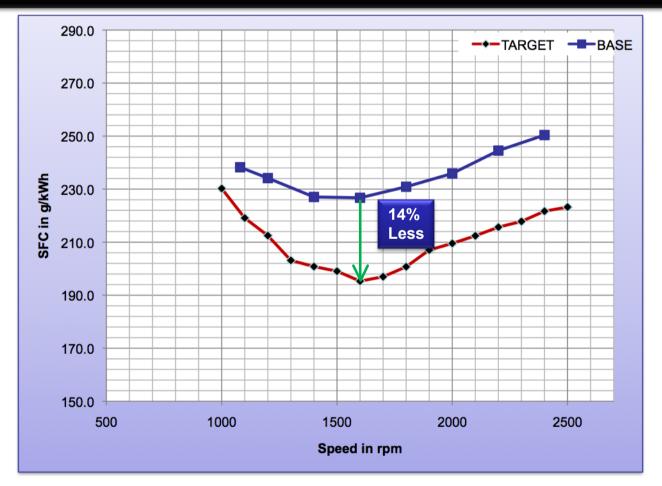
22-06-2010

- Downsizing concept and definition
- Advantages of downsizing
- Base Engine Specification
- Target Engine Specification
- Techniques adopted to improve power density
- Comparison
- Limits of Downsizing
- Future Trends


Comparison of Power

• 140% increase in power from same 5.7 L engine

Comparison of Torque


• 160% increase in torque from same 5.7 L engine

22-06-2010

Comparison of SFC

 14% reduction in minimum SFC to achieve 140% increase in power for same 5.7 I engine

22-06-2010

CONTENTS

- Downsizing concept and definition
- Advantages of downsizing
- Base Engine Specification
- Target Engine Specification
- Techniques adopted to improve power density
- Comparison
- Future Trends

Future Trends

- Two stage turbocharging
- Variable geometry turbocharger
- Turbo-compounding
- Piston type: steel
- Piston rings : chromium ceramic face or physical vapor deposition
- Introduction of stepped connecting rod
- Cylinder block and head
 - material: CGI
- Reduced compression ratio

Thank You

