

Electron beam technologies for highly effective welding and surface hardening of engine and gear components

Dr. Klaus-Rainer Schulze PTR Präzisionstechnik GmbH, Germany

ENGINE EXPO – Stuttgart, 22 June 2010

Global Beam Technologies AG (GBT)

PRÄZISIONSTECHNIK GMEH

Some automotive related customers of PTR

PRÄZISIONSTECHNIK GMEH

Examples of EB welded Gear Parts

PRÄZISIONSTECHNIK GMEH

ENGINE EXPO 2010

Examples of EB welded Gear Parts

PRÄZISIONSTECHNIK GMEH

ENGINE EXPO 2010

EBW of Gear Wheel and Synchronising Ring

PRÄZISIONSTECHNIK GMEH

ENGINE EXPO 2010

Planet Carrier (Detail: radial Partition Weld)

PRÄZISIONSTECHNIK GMEH

PRÄZISIONSTECHNIK GMEH

ENGINE EXPO 2010

Turbo-Charger Rotors – different Examples

PRÄZISIONSTECHNIK GMEH

ENGINE EXPO 2010

EB hardened surfaces

PRÄZISIONSTECHNIK GMEH

ENGINE EXPO 2010

Variety of EB welding

PRÄZISIONSTECHNIK GMEH

ENGINE EXPO 2010

PTR EB Generator 60 kV (schematic)

PRÄZISIONSTECHNIK GMEH

ENGINE EXPO 2010

PTR EB Generator (60 kV)

PRÄZISIONSTECHNIK GMEH

ENGINE EXPO 2010

PRÄZISIONSTECHNIK GMEH

ENGINE EXPO 2010

Cathode for EB generation

PRÄZISIONSTECHNIK GMEH

Ribbon Filament BK 1.4 Tungsten Thickness 0.1 mm Emission area 2 mm² **Precision Tool** for Cathode Assembling

EB welding in vacuum

PRÄZISIONSTECHNIK GMEH

Vakuum

ENGINE EXPO 2010

Formation of the Key-Hole Effect

PRÄZISIONSTECHNIK GMEH

Beads on Plate using different High Voltage

PRÄZISIONSTECHNIK GMEH

150 kV

ENGINE EXPO 2010

EB Weld in Steel: 170 mm deep

PRÄZISIONSTECHNIK GMEH

ENGINE EXPO 2010

Comparison SAW and MIG vs. EB welds

PRÄZISIONSTECHNIK GMEH

100 mm dick

ENGINE EXPO 2010

Comparison energy per length

PRÄZISIONSTECHNIK GMEH

Beam Oscillation Figures

PRÄZISIONSTECHNIK GMEH

ENGINE EXPO 2010

EB Weld: Wide Profile

ENGINE EXPO 2010

- possible beam parameters: <u>60</u> 175 kV and up to 60 kW (and more)
- universal machines: large or small sized chambers for different use
- production type machines: work-piece adopted chambers and short

cycle times for mass production

stand-alone machines or EB welding production lines including handling etc.

Customised PTR Machines (examples)

PRÄZISIONSTECHNIK GMEH

Chamber Type

Index-Table Type

ENGINE EXPO 2010

Scheme of P-Type Machine

PRÄZISIONSTECHNIK GMEH

Different layouts are possible – e. g. number of parts per cycle; orientation of beam generator.

Tooling Tables of P- and S-Type Machines, resp.

PRÄZISIONSTECHNIK GMEH

Cycle-Type Machine: Type P4

PRÄZISIONSTECHNIK GMEH

Scheme of K-Type Machine

PRÄZISIONSTECHNIK GMEH

Different layouts are possible – e. g. number of parts per cycle; orientation of beam generator.

Cycle-Type Machine: EBOMAT K 25

PRÄZISIONSTECHNIK GMEH

ENGINE EXPO 2010

Index-Table Machine S-Type (schematic)

PRÄZISIONSTECHNIK GMEH

Cycle-Type Air-Lock Machine EBW S

PRÄZISIONSTECHNIK GMEH

EB Welders and Automated Production Lines

- automated EB welder
- automated loading and unloading
- interlinking with stations before and after EB welding:
 - individualising and feeding of parts
 - cleaning and drying
 - > assembling (pressing when required)
 - preheating (when required)
 - demagnetising
 - brushing
 - > quality check (ultrasonic, optical, mechanical)
 - palletising
- all-inclusive safety features and equipment

Gantry-automated Line with EBW P4-1/6-60

PRÄZISIONSTECHNIK GMEH

Automated Cell for EB Welding of Gear Parts

PRÄZISIONSTECHNIK GMEH Feeding components (A)Hauptschalter Nullpunkt <(F2) 120 Cleaning VE 1/ machine **[** 5657,69 EBW Schutzgitter schräg \square <(F1) P1 $\triangleleft \widetilde{W}$ **Output of** welded parts Bandhöhe 860mm ° 06 Robots -3720 Preheater 600 ¥3⁄ 3500

ENGINE EXPO 2010

Automated Cell with EBW S2 and Robots

PRÄZISIONSTECHNIK GMEH

ENGINE EXPO 2010

ENGINE EXPO 2010

ENGINE EXPO 2010

ENGINE EXPO 2010

Turbo-Rotor Tooling

PRÄZISIONSTECHNIK GMEH

ENGINE EXPO 2010

Robot Handling for Turbocharger Rotors

PRÄZISIONSTECHNIK GMEH

Precision tools for clamping of final machined parts

K.-R. Schulze

ENGINE EXPO 2010

Piston Welding (radial + axial simultaneously)

PRÄZISIONSTECHNIK GMEH

Beam Deflection Scopes by EBO JUMP

PRÄZISIONSTECHNIK OMEH

ENGINE EXPO 2010

Variants of EB Surface Modification

PRÄZISIONSTECHNIK GMEH

Methods for EB Surface Modification

PRÄZISIONSTECHNIK GMEH

Various patterns of surface structuring

Solid phase

Liquid phase

ENGINE EXPO 2010

EB Hardening (Solid Phase)

PRÄZISIONSTECHNIK GMEH

ENGINE EXPO 2010

EB Hardening Machine for Cam Shafts

ENGINE EXPO 2010

AUDI: EB Hardening Machine

PRÄZISIONSTECHNIK GMEH

EB Machine (1,6 m x 5,0 m) for Chaku-Chaku Line

"Joint Detection" using the Electron Beam

PRÄZISIONSTECHNIK GMEH

ENGINE EXPO 2010

Video optic: Seam tracking

PRÄZISIONSTECHNIK GMEH

Pressure Accumulator

Joint in Video Optics

2-Beam Technology: Welding + Smoothing

PRÄZISIONSTECHNIK GMEH

ENGINE EXPO 2010

Use of Beam "Splitting" (example)

PRÄZISIONSTECHNIK GMEH

Beam "Splitting": 2 Axial Welds in 1 Run

PRÄZISIONSTECHNIK GMEH

EB welding on atmosphere

PRÄZISIONSTECHNIK GMEH

ENGINE EXPO 2010

Joint Geometries in Nonvac EB Welding

PRÄZISIONSTECHNIK CMBH

Weld examples: in vacuum and on atmosphere

PRÄZISIONSTECHNIK GMEH

1.2 + 1.6 mm thick

K.-R. Schulze

thick

ENGINE EXPO 2010

Properties of NVEBW

- **Key- hole effect** is possible
- Suitable for nearly all joint geometries
- **No protection gas** needed because of metal vapour plasma
- Very high welding speeds possible
- Only **3 main parameters** to be adjusted
 - Beam power
 - Working distance
 - Welding speed
- **Tolerable** against
 - Gap bridging
 - Edge mismatch
 - Beam impact angle
- Use of additional material (e. g. filler wire) possible
- Low consumption costs

NVEBW Generator on a Gantry

PRÄZISIONSTECHNIK GMEH

ENGINE EXPO 2010

NVEBW: Orifice System at Generator

PRÄZISIONSTECHNIK GMEH

robust and serviceable

NVEB welded Cockpit Carrier Beams (completed)

PRÄZISIONSTECHNIK GMEH

ENGINE EXPO 2010

NVEBW Edge Weld (2 x 2,5 mm) on AIMg3 Cockpit Carrier Beam

PRÄZISIONSTECHNIK GMEH

ENGINE EXPO 2010

Loading of Beam Parts into Tooling

PRÄZISIONSTECHNIK GMEH

ENGINE EXPO 2010

NVEBW Twin Plant with 2 Generators

PRÄZISIONSTECHNIK GMEH

ENGINE EXPO 2010

NVEBW Production of Cockpit-Carrier Beams

PRÄZISIONSTECHNIK GMEH

ENGINE EXPO 2010

Nonvac EB welded Torque Converter

PRÄZISIONSTECHNIK GMEH

ENGINE EXPO 2010

NVEBW on Torque Converter (schematic)

ENGINE EXPO 2010

NVEB Welder for Torque Converters

PRÄZISIONSTECHNIK GMEH

ENGINE EXPO 2010

NVEBW of Die-Cast Part (with Gaps of 1 mm)

PRÄZISIONSTECHNIK GMEH

ENGINE EXPO 2010

K.-R. Schulze

- beam power of 30 W to 60 kW (on work-piece) possible
- power densities > 10⁷ W/cm² possible
- electromagnetic beam forming and deflection (static or dynamic)
- electromagnetic beam splitting (time-shared)
- absorption of beam energy independent on material and surface
- no limitation by plasma effects
- use of reflected electrons for joint detection or imaging
- welding in vacuum or under atmospheric pressure
- electrical regulation of all parameters
- energy efficiency of entire beam generation >> 50%
- Iow consumption costs

Draft of welding design and manufacturing technologies

- Support in development of welding approach and parameters
- Welding of pilot and pre-series parts
- Draft of custom-tailored production plant
- Manufacturing and delivery of turn-key ready welding plants
- Education and training of customer's personnel
- All-including service over decads of years

www.ptr-gmbh.de

EB Welder on the Way to Customer...

PRÄZISIONSTECHNIK GMEH

ENGINE EXPO 2010

K.-R. Schulze