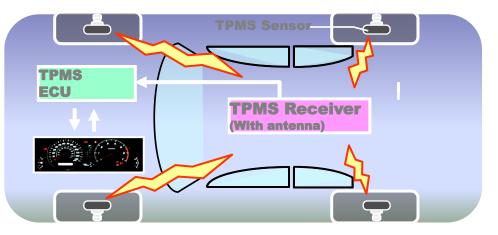


N I R A

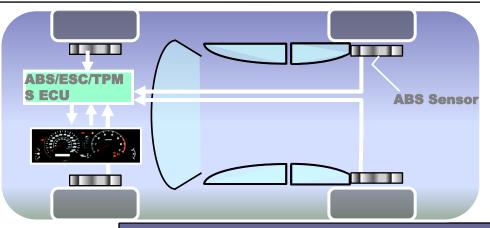
A Sensor Fusion Approach To Tire Pressure Monitoring

Dr. Urban Forssell President & CEO NIRA Dynamics AB


Dr. Urban Forssell, Vehicle Dynamics Expo, Stuttgart, June 18, 2009

Two Types of TPMS

Direct TPMS:


DYNAMICS

- Hardware-based systems.
- Sensors mounted in the tires communicate pressure information to the dedicated TPMS ECU.

Indirect TPMS:

- Software-based systems.
- The pressure state in the tires inferred from the wheel speed signals and other sensor signals in the vehicle.

About NIRA Dynamics AB

- Privately owned Swedish company founded in 2001.
- Registered office in Linköping, Sweden.
 Branch office in Gothenburg, Sweden.
- Core expertise in signal processing and sensor fusion for active safety and infotainment applications.
- Develops, markets, and sells software products.
- Market leaders in advanced indirect TPMS.

Motivation For TPMS

TPMSs monitor the tire pressures and can alert the driver of pressure losses before he/she notices it.

- Increases safety (cf. TREAD Act, FMVSS 138)
- Reduces environmental impact (emissions, CO2, tire wear)
- Improves the cost of ownership (fuel consumption, tire wear)
- Increases driver comfort (no unwanted stops)

Nominal

Qualifiers To The Previous Statements

- Not all accidents caused by tire issues
- TPMSs will not prevent 100% of the accidents caused by tire issues
- The driver is always responsible for maintaining correct inflation pressure(s) in the tires
- Fuel consumption and CO2 reductions with TPMS ~0.5% (cf., e.g., GRRF TPMS cost/benefit analysis report from 2008)

Sensor Fusion

"Sensor fusion is the combining of sensory data or data derived from sensory data from disparate sources such that the resulting information is in some sense *better* than would be possible when these sources were used individually." (Source: Wikipedia)

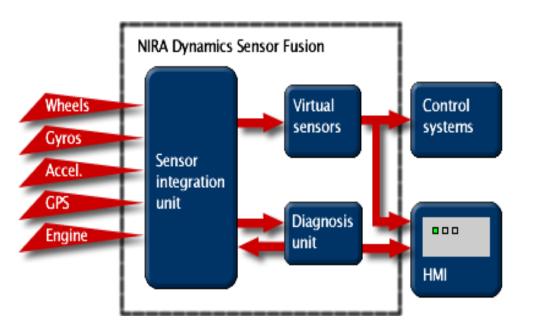
Better!?

- Improved precision of existing sensors.
- New functionality (virtual sensing).
- Improved diagnostics capabilities.
- Low cost (software, no additional hardware).
- Sensor fusion intensively studied in academic research and widely applied in, e.g., defence, aerospace, and vehicle industries.

Theoretical Foundation

Statistical inference:

The probability for observing a state x(t) given measurements y(1:t) is given by Bayes' rule:


$$p(x(t) \mid y(1:t)) = \frac{p(y(1:t) \mid x(t)) p(x(t))}{p(y(1:t))}$$

where p(y(1:t)|x(t)) conditional probability, p(x(t)) prior probability, and p(y(1:t)) marginal probability.

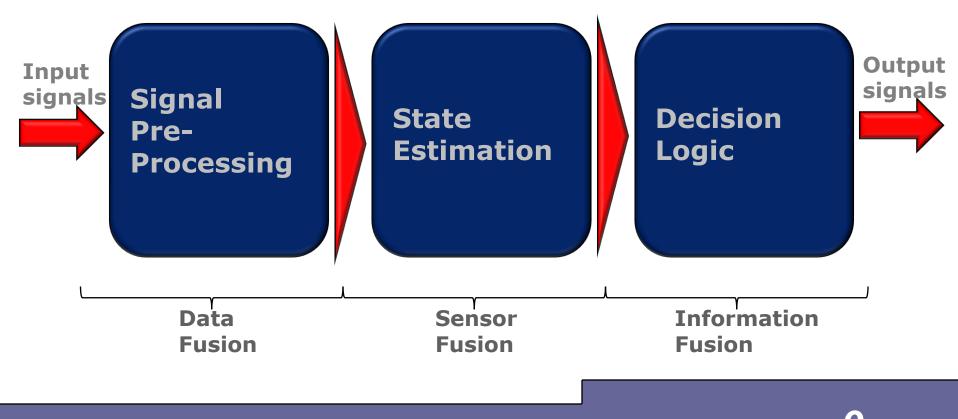
Estimation methods: Kalman filtering, particle filtering

NIRA Dynamics Sensor Fusion

Holistic approach:

Use information from all available sensors in the vehicle and calculate *virtual sensor* signals which can be used in different control and driver information systems.

Application examples:


- MAP GPS-free positioning
- RFI Road friction monitoring
- TPI Tire pressure monitoring

IRA

DYNAMICS

TPI Input/Output Signals

Input Signals

- Wheel speeds
- Engine torque
- Engine RPM
- Yaw rate
- Lateral acceleration
- Longitudinal acceleration
- Status flags
 - Brake active
 - Gearshift in progress
 - Etc.
- AWD state
- Suspension state
- Load state

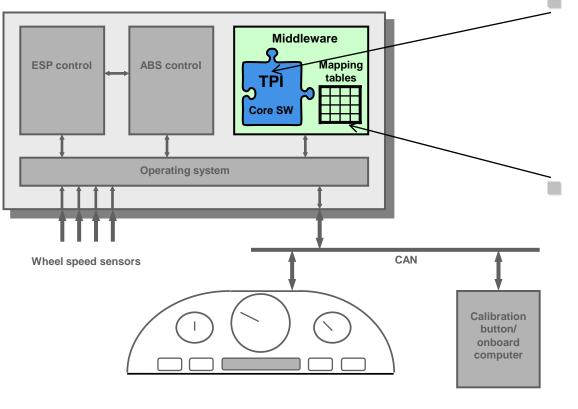
.....

Output Signals

- Pressure state per tire
- Type of under-inflation detected per tire
- System state
- Error codes

- TPI uses only existing sensors in the vehicle and does not require any extra hardware
- TPI can be integrated as is in different target systems such as:
 - ABS/ESC ECU

DYNAMICS


- Airbag ECU
- Chassis/Body ECU

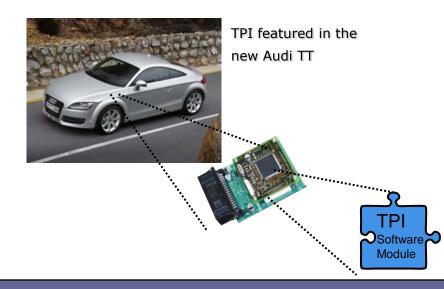
- The TPI software is delivered as a standardized software component compiled for the chosen target processor
- The TPI function is accessed through a well-defined, easy-touse, public API
- The API controls the signal flow and execution of the TPI software

RA

DYNAMICS

TPI core software

- Implemented in ANSI C code
- Delivered as binary file
- Realizes the TPI function and the API


Middleware

- Manages
 - TPI execution control
 - I/O handling
 - EEPROM handling
 - Diagnostics
- Includes application specific mapping tables

TPI Feature Summary

- Low cost, high performance
- Competitive performance:
 - ✓ detects under-inflation in 1-4 tires
 - identifies the under-inflated tire(s)
 - meets the requirements in FMVSS 138
 - robust against nuisance warnings

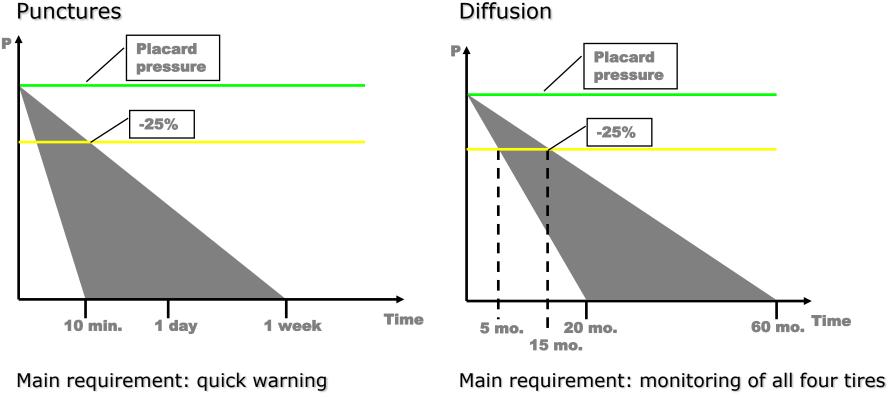
- Simple, software-based system design
 - no wheel electronics necessary
 - no RF components necessary
- Long service life, no maintenance
 - no battery change
 - function follows the car not the wheels

Comparison TPI vs. Other Types of TPMSs

	Direct TPMSs		 Indirect TPMSs	
	Advanced	Basic	TPI	1st gen.
Puncture detection 1 tire	\checkmark	\checkmark	✓	~
Diffusion detection in up to all 4 tires	\checkmark	\checkmark	\checkmark	-
Identification of which tires are under-inflated	\checkmark	-	\checkmark	-
Pressure display possible	\checkmark	-	-	-
Absolute pressure monitoring	\checkmark	\checkmark	-	-
Warning threshold	arbitrary	arbitrary	20-25 %	30-35 %
Reset / calibration button	\checkmark	-	\checkmark	✓

IRA

DYNAMICS



Cost Comparison Direct/Indirect TPMS

	Direct TPMSs	Indirect TPMSs	
Piece price 2014 (high volume)	~50 €	~8€	
Maintenance costs over vehicle lifetime	~350 €	0€	
Total	~400 €	~8€	

TPMS Requirements in Real-World Pressure Drop Scenarios

(Non-requirement: warning threshold)

(Non-requirement: detection time)

Summary

RA

DYNAMICS

Why TPMS?

- Safety
- Environment
- Economy
- Comfort

Why indirect TPMS?

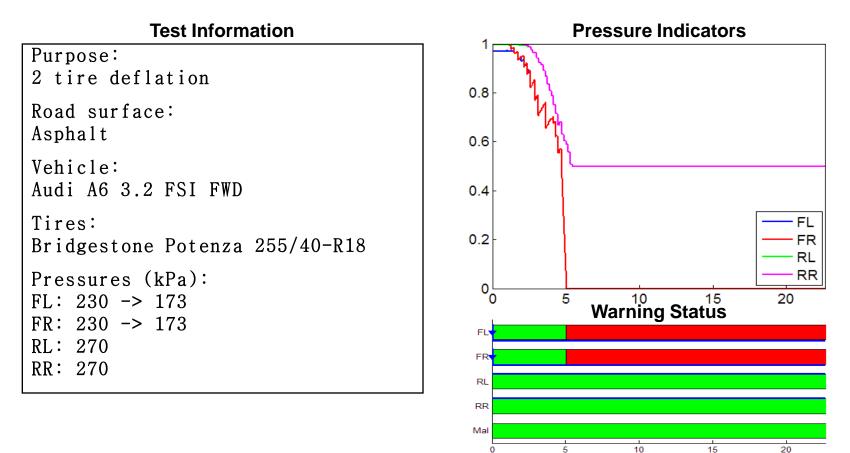
- Cost. No additional sensors needed, no maintenance costs.
- Easy to integrate. Softwarebased solution, uses only existing sensors, requires no additional hardware.
- Performance. Advanced indirect TPMS like TPI detect pressure drops in up to all 4 tires, are robust against nuisance warnings, work with all kinds of tires.
- **Reliability.** Software doesn't break.

Thank you for your attention!

Dr. Urban Forssell, Vehicle Dynamics Expo, Stuttgart, June 18, 2009

RA

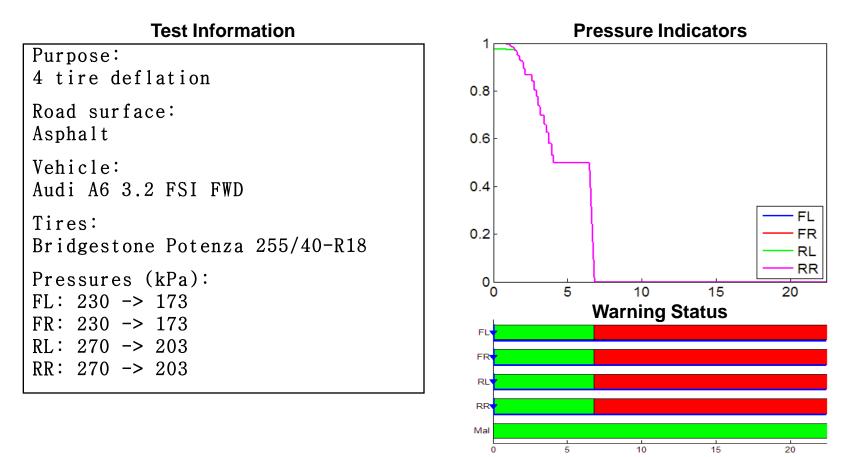
DYNAMICS



Research for safety

Backup

TPI Test Results, Example 1: 2 Tires, -25%



Research for safety

TPI Test Results, Example 2: 4 Tires, -25%

