

Driving dynamics and hybrid combined in the torque vectoring

Concepts of axle differentials with hybrid functionality and active torque distribution

Vehicle Dynamics Expo 2009 'Open Technology Forum'

Dr. Rüdiger Freimann Dr. Thieß-Magnus Wolter Erik Schneider

Stuttgart, June 17th, 2009

Overview Driving dynamics and hybrid combined in the torque vectoring

Initiation

- Motivation
- Torque Vectoring and driving dynamics
- Simulation approach

2 Examples of "Hybridization with active torque distribution"

- Design
- Functionality

Evaluation results for longitudinal and lateral dynamics

- Layout and optimization of longitudinal dynamics
- Layout and optimization of lateral dynamics

Summary

Overview Driving dynamics and hybrid combined in the torque vectoring

Initiation

- Motivation
- Torque Vectoring and driving dynamics
- Simulation approach

2 Examples of "Hybridization with active torque distribution"

- Design
- Functionality

Evaluation results for longitudinal and lateral dynamics

- Layout and optimization of longitudinal dynamics
- Layout and optimization of lateral dynamics

Summary

Motivation Driving dynamics and hybrid combined in the torque vectoring

- Active manipulation of lateral dynamics
 - Torque Vectoring System
- Active manipulation of longitudinal dynamics
 - Traction advancement
 - Advancement of acceleration behavior
- Hybrid function
 - Energy recovery and boost function

Ease integration

- Moderate changes in driveline design and package
- Preservation of engine and driveline configurations
- Modularity and ability to retrofit

Possible positions at the differential Integration of electrical machines in the powertrain

Axle differential with active torque distribution Torque-Vectoring

Positive effect on

- Traction
- Critical cornering speed
- Self-steering response
- Handling and cornering characteristics
- Agility
- · Yaw damping / yaw boosting
- Reducing brake intervention

Basic Optimization Targets System Definition

Longitudinal Dynamics

- Optimal E-Machine Concept related to driving Cycle and performance targets
- Optimal Battery Capacity related to driving Cycle
- Optimal Hybrid Strategy related to driving Cycle
- Lateral Dynamics and Driving safety
 - Optimal E-Machine Concept and set-up for dynamic Torque Vectoring
 - Targets for mass distribution and self steer characteristics
 - Limitations to hybrid strategy under lateral dynamics
 - Necessary sub-controls for ASR/MSR and ESC Intervention

→Networked Simulation approach for Optimization and pre evaluation through virtual test runs

Simulation environment Networked simulation

Use of EXITE-ACE as co-simulation tool to connect IAV-powertrain model VeLoDyn and common handling simulation tool veDyna

Powertrain model	← Integration tool	\longleftrightarrow	Vehicle model
Velodyn			TESIS DYNAware
detailed Powertrain model representing hybrid			 detailed vehicle chassis model
architecture and contains operational strategy			 detailed environmental description including a maneuver controller for longitudinal/lateral maneuver setup

Overview Driving dynamics and hybrid combined in the torque vectoring

Initiation

- Motivation
- Torque Vectoring and driving dynamics
- Simulation approach

2 Examples of "Hybridization with active torque distribution"

- Design
- Functionality

Evaluation results for longitudinal and lateral dynamics

- Layout and optimization of longitudinal dynamics
- Layout and optimization of lateral dynamics

Summary

#1 Example, roughly equiv. to Lexus RX400h Integration of electrical machines in the powertrain

- Battery charging during normal driving
- Basic Recuperation (engine drag torque superposition)
- Brake recuperation (system blending).
- AMT shift support (boost)
- Driving with E-machine only
- 4WD-strategy and rear axle boost
- Safety strategy for:
 - Driving with E- machine in "Active Short"
 - Erroneous Torque set-point / sign
 - Slip intervention (ASR/MSR)
 - ESC and ABS intervention (e. g. under coupled inertia)

Simulation settings 3d-Alpe d'Huez simulation

🖊 veDYNA 3.10.3 - Standa	ard Edition		<u>- I ×</u>	
File Simulation Extras Av 😪 🔲 🖿 🎆 🐙 泽	dd-Ons Help			
Model	Model and Platform			
Platform:	Off-Board Simulink			
RT/V Option:	Pass MATLAB Workspace to RDV Executable			
Initial Conditions:	(none)	- B B	4	
	Vehicle			
Vehicle Database:	XYZ Hybrid	-		
Vehicle Configuration:	XYZ_HY3_308_teilval		\$	Venicle
				paramotorization
	Simulation Control			parametenzation
Simulation Project:	Tobias	-	2	
Maneuver				
Longitudinal Dynamics:	XYZ_Adv_Driver	· 🖻 🗹		
Lateral Dynamics:	XYZ_Adv_Driver	· · · · · · · · · · · · · · · · · · ·		
Constraints:	XYZ_mue_1	- 🖻 🗹	\$	
Driver				Advanced driver
Driver Type:	C Basic Advanced			sottings and road
Driver Parameters:	XYZ_Adv_Driver_high_mue	· 🖻 🖻 🗉	5	settings and road
Path Settings:	standard	- 🖻	\$	conditions
Road				
Road Type:	C Standard C Two-Lane/Advanced	<u> </u>	<u>)</u>	
XY-Layout:	alpedhuez_profil			3D-Two-Lane Alpe
Z-Profile:	alpedhuez_profil		\$	
Road Options:	Close Road 🔽 Generate Animation	Geometry		d'Huez road profile
Trace	-			
Trace File:	PSA_long	⊥ <u>⊯</u> _		
Trace Interval [s]:	0 1000		\$	

→ Implementation of a ASR/MSR controller by IAV

- Front and rear E-Machine scaled from longitudinal optimization
- Driver used form veDyna expect gear shifting
- All hybrid functions enabled
- SOC at start: 70 %
- 4WD torque split strategy:
 - 1. As much as possible with front axle, then add rear axle
 - 2. Permanent 4WD suport SOC dependent
- ASR on
- MSR on/off

Vehicle behaviour while regen. braking on Alpe d'Huez 3d-Alpe d'Huez simulation

Vehicle behavior while regen. braking on Alpe d'Huez

Integration of electric machines in the powertrain #2 Rear Axle differential with active torque distribution

Wheel-specific torque vectoring

- Existing engine/transmission configurations (MT, AMT, DCT, CVT, AT) can be carried over
- Rear-axle module: supplier add-on
- Utilization of wheel-specific coefficient of friction

Using a suitable storage system

- · Parallel hybrid
- Improved longitudinal dynamics
- Avoidance of traction interruption

Design of active differential

Axle differential with active torque distribution

Flexibility and modularity

- Open differential
- Active differential
- ... with hybrid function
- Basis for electric axle
- Capability of integrating gear ratio
- → High degree of integration for electric machine without gear ratio
- → Existing mechanical structures and technologies carried over
- → Low additional moments of inertia, utilization of existing package

Hybrid functionalities

Axle differential with active torque distribution

Torque vectoring functionality

Axle differential with active torque distribution

Constant-speed driving without e-machines

Constant-speed driving boosted by e-machines (2 x 350 Nm)

Constant-speed driving boosted by e-machines (2 x 350 Nm) and transmission

Constant-speed driving only with e-machines (2 x 350 Nm)

Constant-speed driving only with e-machines (2 x 350 Nm) and transmission

Overview Driving dynamics and hybrid combined in the torque vectoring

Initiation

- Motivation
- Torque Vectoring and driving dynamics
- Simulation approach

2 Examples of "Hybridization with active torque distribution"

- Design
- Functionality

Evaluation results for longitudinal and lateral dynamics

- Layout and optimization of longitudinal dynamics
- Layout and optimization of lateral dynamics

Summary

Overview Driving dynamics and hybrid combined in the torque vectoring

Initiation

- Motivation
- Torque Vectoring and driving dynamics
- Simulation approach

2 Examples of "Hybridization with active torque distribution"

- Design
- Functionality

Evaluation results for longitudinal and lateral dynamics

- Layout and optimization of longitudinal dynamics
- Layout and optimization of lateral dynamics

Summary

Consumption potential in the NEDC Simulations results of longitudinal dynamics

Full-load acceleration

	Boosted versus conventional
Acceleration from 0 – 100 km/h	-18.9 %
Acceleration from 80 – 120 km/h	-27.7 %
Acceleration from 80 – 160 km/h	-31.6 %

Consumption in NEDC

	Start- stop	Dependent on operating strategy
Potential	- 4.1%	-9.5% to - 15.5%

Wheel-specific Torque-Vectoring Simulations results of lateral dynamics ISO 4138

Steady-state skid-pad driving R = 100 m (test to ISO 4138)

Self-steering response impact

- → predictable driving behavior also on upper lateral acceleration
- → increase the speed of cornering
- → possibility to recuperate transversal dynamics energy
- → possibility to realize a lane keeping system

Wheel-specific Torque-Vectoring Simulations results of lateral dynamics ISO 7401

Step steering-angle change from 0 to 50° (300 % at 80 km/h, test to ISO 7401)

Driving dynamics impact

- → low response time by fast actuator speed (~10 ms)
- → enhancement of steering response (yaw rate gain)
- → reduction of undesired yaw rate response (yaw rate amortization)
- → reduction of body motion

Wheel-specific Torque-Vectoring Simulations results of lateral dynamics FMVSS 126

Sine with dwell for 6.5xA (test to FMVSS 126)

Driving stability impact

- → impact of tracking stability
- → vehicle stabilization without braking
- → increase of driving dynamics by pre controlled intervention

Torque-Vectoring and Hybrid Combined system layout optimisation

Influence of additional torques for stabilizing potential Based on: FMVSS 126 at max. steering angle amplification

Simulated Vehicle category: SUV, (not fully verified)

Driving Dynamics and Hybrid Combined in the Torque-Vectoring

Initiation

- Motivation
- Torque Vectoring and driving dynamics
- Simulation approach

2 Examples of "Hybridization with active torque distribution"

- Design
- Functionality

Evaluation results for longitudinal and lateral dynamics

- Layout and optimization of longitudinal dynamics
- Layout and optimization of lateral dynamics

Summary

Summary Hybrid control with active torque distribution

Positive effect on longitudinal and lateral dynamics

- Assist cornering behavior and vehicle stabilization
- Offer traction optimization, boost function and shift support at MT and AMT

Parallel hybrid

• Electric machines provide the basis for hybridized powertrain

Benefits of electric machines direct at the differential

- Use of existing engine/transmission configurations
- Integrative, flexible and modular solution
- Very short control response time to provide the demanded driving dynamics intervention

Drawbacks

- Additional costs and weight related to standard TV
- Advanced control necessary

Thank you

Dr. Rüdiger Freimann

IAV GmbH Rockwellstrasse 16 D-38518 Gifhorn Germany

Phone +49 (0) 5371 805 2110

Ruediger.Freimann@iav.de