

A system engineering approach for the design optimization of an active suspension

Marco GUBITOSA Jan ANTHONIS Nicolas ALBARELLO

Research Engineer Simulation Division Task Manager Engineering Services Project Engineer Engineering Services

16, 17, 18 JUNE 2009 STUTTGART

The intelligent vehicle paradigm

- Engineering challenges for intelligent vehicle systems
- LMS Imagine.Lab AMESim®
- noesis OPTIMUS[®]

Engineering challenges for intelligent vehicle systems

1 0 0 2 3 0 0 0 4 0 0 0 5 0

LMS Imagine.Lab AMESim[®]

ICE Related Hydraulics

Fuel Injection, VVT, VVA, Engine compression brake

nousis OPTIMUS®

1 • • • 2 • 3 • • • • 4 • • • • 5 •

Simulation process capturing

Design Optimization

- Design-Of-Experiments
- Multi Objectives Optimization
- Local & Global Algorithms
- Robustness and Reliability analysis

Post-Processing

Imagine.Lab + OPTIMUS Functionality overview

$1 \bullet \bullet \bullet \bullet \bullet \bullet$ 5

Parameterize and automate any analysis sequence Experiment and fit models through the generated data Optimize the models or the analysis sequence Ensure the reliability and robustness of the design Process supported by an intuitive, user-friendly **Graphical User Interface**

7 copyright LMS International - 2009

The optimal design approach

Structured design scheme

Structured design scheme

Model

Loops to define the active damper characteristics (piston and rod, valves, flow)

Actuator Model

Vehicle Model

- Virtual model overview
- Measurement correlation Model validity range
- The controlled vehicle Active model set up
- Controller gains optimization

Virtual model overview

1 • • • 2 • 3 • • • 4 • • • • 5 •

11 copyright LMS International - 2009

Virtual model overview

Measurement correlation – Model validity range

1 • • • 2 • 3 • • • • 4 • • • • • 5 •

Measurements and virtual test with the vehicle running on Road_1 at 80km/h

The controlled vehicle - Active model set up

1 • • • 2 • 3 • • • • 4 • • • • • 5 •

The sky-hook approach

$$F_{SKY} = -\frac{dZ_S}{dt} \cdot R_{SKY}$$
$$F_S = F_{SKY} + F_{WH} = -\frac{dZ_S}{dt} \cdot R_{SKY} - (\dot{Z}_S - \dot{Z}_{US}) \cdot R_{WH}$$

Generalized on the full vehicle body modes

Controller gains optimization - 1

no() sis / 🔀 🖁

The optimizations ran with the *Differential Evolution Algorithm* (Global Optimization Scheme) in a nested loop

Controller gains optimization - 2

1 • • • 2 • 3 • • • • 4 • • • • 5 •

The set up of the active vehicle has been done with two different sets of springs ("**Normal**" and "**Soft**"), which leads to a small influence on the optimization results of this selection, because of the compensation offered by the active elements.

Soft Springs Set up				
	Ride Roads			
		1	2	3
	R WH_Front	1155	1541	1348
	R WH_Rear	1899	542	1221
	R SKY_z	16025	18046	27290
	R SKY_rx	1402	1402	1251
	R SKY_ry	788	681	849
	MAX_HeaveSpeed	0.372	0.136	0.041
	MIN_HeaveSpeed	0.389	0.157	0.039
	MAX_Roll	1.322	0.932	0.273
	MIN_Roll	1.088	1.068	0.288
	MAX_Pitch	0.556	0.537	0.080
	MIN_Pitch	0.842	0.614	0.126
	DampCoeff 1.1	0.499	0.751	0.964
	DampCoeff 1.2	0.499	0.751	0.964
	DampCoeff 2.1	0.733	0.446	0.631
	DampCoeff 2.2	0.733	0.446	0.631
	DampCoeff 3.1	0.692	0.746	0.673
	DampCoeff 3.2	0.692	0.746	0.673

From the three ride maneuvers the *Mission Profiles* have been extracted.

Actuator Model

- Actuator representation and functional model
- DOE for performance achievement
- Mission Profiles & Iso-Power curves
- Optimization for energy consumption minimization
- The optima achievement

Actuator representation and functional model

$$F = \begin{cases} \frac{\rho \cdot S_1 \cdot (Q - S_2 \cdot \dot{x})^2}{2 \cdot C_q^2 \cdot S_{pv}^2} - p_3 \cdot (S_2 - S_1) & \text{if } \dot{x} > 0 \\ - \left[\frac{\rho \cdot (Q + (S_2 - S_1) \cdot \dot{x})^2}{2 \cdot C_q^2 \cdot S_{bv}^2} + p_3 \right] \cdot (S_2 - S_1) & \text{if } \dot{x} < 0 \end{cases}$$

- fluid density ρ :
- Q: pump flow

- p_3 : accumulator pressure S_1 : surface on the rod side
- S_{pv} : orifice of the piston value S_{bv} : orifice of the base value C_q : flow coefficient \dot{x} : relative velocity of the piston w.r.t. the cylinder
- S_2 : surface on the piston side

5

DOE for performance achievement

1 • • • 2 • 3 • • • • 4 • • • 5 •

Define the feasible combinations to achieve the performance requirements defined by the mission profiles in terms of deliverable power achievement

This DOE simulates all combinations of damper, valves and flow (discretized in 3 flows: 1, 5 and 10 L/min.) for a total of 1296

A combination is composed of:

Rod (4)
Piston (3)
Piston valve (6)
Base valve (6)
Flow (3)

Selection of 4 critical points (P, v)

Index	Rod diameter [mm]	Cylinder diameter [mm]	
1	12,4	25.4	
2	15,8	25,4	
3	12,4	27	
4	15,8		
5	18	30	
6	20		
7	18		
8	20	32	
9	22		
10	20	35	
11	25		
12	25	45	

Those *feasible combinations* will be considered in the optimization loop

Mission Profiles & Iso-Power curves

Optimization for energy consumption minimization

1 • • • 2 • 3 • • • • 4 • • • • 5 •

The objective function takes into account the mean error and the mean power consumption.

Optimization run for selected points using Genetic Algorithm

The optima achievement

1 • • • 2 • 3 • • • • 4 • • • • • 5 •

Front Damper

- ✓ Damper: 35-20 (piston diameter 35mm and rod diameter 20mm)
- ✓ Valves: High Pressure with minimal characteristic
- ✓ Flow rate: 1L/min

Cylinder Ø	Rod Ø
[mm]	[mm]
30	20
22	20
32	22
35	20

These combinations all use high pressure (HP) valves (min or max)

	Mean error (N)	Mean consumption (W)
Optimum (weight 5)	488	23
Optimum (weight 10)	314	53

Rear Damper

✓ Damper 45-25
 ✓ Piston valve: High Pressure maximum
 ✓ Base valve: Normal minimum
 ✓ Flow rate: 1L/min

Cylinder Ø [mm]	Rod Ø [mm]	Piston valve	Base valve
22	22	N min	HD main
52	22	N max	nr min
25	25	HP min	
55	23	HP max	N maine
45 25		HP min	IN MIN
43	23	HP max	

	Mean error (N)	Mean consumption (W)
Optimum (weight 10)	368 N	57 W

Conclusions & Outlooks

• The Intelligent Product development workflow

The Intelligent Product development workflow

Thank you! Time for Q & A...

