Embedded Success dSPACE

Mechatronic Test Concepts for Vehicle Dynamics Controllers

Thomas Gockeln

dSPACE GmbH · Technologiepark 25 · 33100 Paderborn

Stuttgart 17.06.09

About dSPACE – Products and Services

dSPACE

- World's leading provider of solutions for developing ECU software and mechatronic controls
- dSPACE worldwide
 - Headquarters in Paderborn, Germany
 - Subsidiaries in the USA, France, the UK, and Japan; Representative Office in China
 - Distributors in 9 other countries
- 55% of sales are in exports
- Over 800 employees worldwide

dSPACE in Germany

Location Paderborn – Headquarters

- Development
- Administration
- Engineering
- Sales

Location Pfaffenhofen/Munich

- Engineering
- Sales

Location Holzgerlingen/Stuttgart

- Engineering
- Sales

Business Fields

Product Areas

Hardware-in-the-Loop-Simulation

dSPACE

Reale Fahrzeugumgebung

Simulierte Fahrzeugumgebung

Introduction - Structure of Vehicle Dynamics System

ECU network for Vehicle Dynamics (example structure):

Distributed functions, ECU network

dSPACE

- Safety critical functions
 → comprehensive testing
- Very high hardware integration level:
- ECUs and systems come mainly from suppliers

→ simulation on power level (electrical or mechanical)

HIL Setup

Standard Setup

Sensors and actuators are not part of the ECU

Introduction – HIL Interfaces

HIL Topology for Vehicle Dynamics HIL (alternative structure):

Different Types of Electric Steering Test Benches:

Load Motor EPS-Motor Torque Sensor Double rotary motion load motors: Steering Column Torque Sensor Load Motor Load Motor **EPS-Gear** (Rode Side) (Driver Side) **EPS-Motor Torque Sensor** Linear and rotary motion load motors: Load (Driver Side) Motor **Torque Sensor**

Steering Rode

Single rotary motion load motor:

Torque Sensor

EPS-Motor

EPS-Gear

possible Only possible for column mounted EPS Possible for AFS Additional measurement equipment possible Linear Load Actuator

EPS Motor need to be separated from any

Torque Sensor need to be simulated

Additional measurement equipment

dSPACE

Heavy bench due to high forces (e.g. 20kN) Additional measurement equipment possible

Force Sensor (Wheel Side – Linear Actuator)

Load Motor

gear

HIL Topology for Vehicle Dynamics HIL (example structure):

dSPACE

Overall integration of EPS electric motor simulation in the vehicle model:

dSPACE

dSPACE

Overall integration of EPS electric motor simulation in the vehicle model:

	Electric Power Level	Mechanical Level (simple bench)	Mechanical Level (heavy bench)
Pros	Flexible (e.g. motor parameter) Full access to the model No safety restrictions	Little knowledge of ECU and electric motor required	Little knowledge of ECU and electric motor required Testing of mechanical parts is possible
Contras	Knowledge of motor characteristics and electric diagnostic functions	Inflexible Testing deviation of motor parameters is impossible	Inflexible Testing deviation of motor parameters is impossible Safety restrictions (mechanics)
Use Case	Component, Diagnosis testing Integration testing of dynamic systems e.g., vehicle dynamics incorporating steering system and ESP or virtual vehicles	Component, Diagnosis testing Integration testing of dynamic systems e.g., vehicle dynamics incorporating steering system and ESP or virtual vehicles	Testing of the mechanical system Testing of entire steering system

Embedded Success dSPACE

Thank you for your attention!

Thomas Gockeln

dSPACE GmbH · Technologiepark 25 · 33100 Paderborn

Stuttgart 17.06.09

Embedded Success dSPACE

Important Notice

© Copyright 2009, dSPACE GmbH

All rights reserved. Written permission is required for reproduction of all or parts of this publication. The source must be stated in any such reproduction.

This publication and the contents hereof are subject to change without notice. Brand names or product names are trademarks or registered trademarks of their respective companies or organizations.