

New advantages for use of taper wire in suspension springs for lightweight design and side load control

Automotive Applications

Vehicle Dynamics Expo 16th to 19th June 2009, Stuttgart Messe, Germany

Agenda

- **1)** Spring design requirements
- 2) Realization of Miniblock-Springs
- 3) The Ahle manufacturing process
- 4) Summary Miniblock-Springs
- 5) New developments / potential of springs with non-constant wire diameter
- 6) Summary

1. Spring Design Requirements

Customer Requirements to Spring Design

- **1.** (Progressive) Deflection Curve
- 2. Light Weight Design
- **3.** Packaging Minimisation
- 4. No Coil Contact
- 5. Super Progression
- 6. Low Side Load
- 7. Characteristic of the Load Deflection Curve

Spring Design Requirements

Requirement:

- **1.** (Progressive) deflection curve
- 2. Light weight design
- 3. Small nstallation space
- 4. No coil contact

Solution:

Non-constant pitch:

• Progression

Non-constant wire diameter:

• Weight reduction: light weight design

Non-constant coil diameter:

- Small block length (Miniblock spring)
- No coil contact (contact elimination)

- 5. Super progression
- 6. Low side load
- 7. Characteristic of the loaddeflection curve

The Non-Constant Principle

Combination of:

- Non-constant pitch
- Non-constant coil diameter
- Non-constant wire diameter

resulted in the design of the Miniblock spring

Miniblock Spring Types

2. Miniblock Spring Design

Complex Customer Requirements

Example: realistic packaging and circular arc deflection

Design and Calculation Methods

- > Ahle Spring Design Algorithm
- > Ahle Tool Design Algorithm
- FEM (Femap/Nastran)
- CAD (ProEngineer)
- > 3-D Measurement (DEA/Hexagon)
- Integrated Tooling and Prototype Manufacturing

Spring Design Algorithm

Microsoft Excel - 1	3115969_20.08.08 xis	Feder-	und Werkzeug	perechnungen					× / ×
Datei Bearbe	iten <u>A</u> nsicht <u>E</u> infü	igen Formakennl.	MiBF prog	MiBF lin SpF Di Zyl	SpF De Zyl SpF D Zy	l ZylF lin Kegel	MaBF Stab Gew	. LD WD CNC	FEN Opt. Frage hier eingeben
0 🐸 🖬 🖉 1	3 Q 7 K	🎖 🗈 🔁 • 🟈	17 - (24 -	🔀 毚 Σ • 🛓	Ž↓ 🛄 🛃 100%	• • 📀 💂 🛄	철 철 교 🌭	111 V 2	g 📲 👔) 🖤 Baarbetung zurückgenden Bearbetung beenden 💂
Arial	- 10 - F	ĸū∣≣≣≣	- He	6 000 € 38 400	谭 律 图 • 3	• 🔺 • 💂			
2 2 Office Live w	schseln Öffnen ▼ S	Speichern * 👳							
A	/× Berechnung einer nro	naressiven Kennlinie			×	G	н	1	J K L M N
82	E _	2772.000 N	E	_	5760 600 N		-0		
84		3772,000 N	D	E -	5/66,600 N				
85	R _A =	31,000 N/m		-	N/mm				
87	SAE =	46,000 mm		+ -	0 %				
88	In Int =	8		zur Auto. RE Berechn	ung				
90				FOF annaccen					
91 Kunde : 92 Federart						Fpa: Ene	3772,00 5768,60	0 N 0 N	
93 Projekt :	F pe2 =	N	S	.E2 =	mm	Ra:	31,00	0 N/mm	
94 ZeichnNr. : 95 Teile-Nr. :	n _{Int2} =	0	R	2 =	N/mm	Re: Re + x% :	0,00	0 N/mm 0 %	
96 PA-Nr. :						Sa-e :	46,00	0 mm	
98	Hide C	Manuelle Berg	echnung	Automatische Be	erechnung	nint :		8	
99 Kräfte	Hilfowana	Finzehvere	S Einzelw	Einz -\8/ *1/2	S Einzel JM *1/2	Gecomtrate	Finzelrote	Finzelrate*?	-
FPACE FPE	Sprog-Sn	S'p-S'n	S'o-S'n	S'0/2-S'n/2	S'0/2-S'n/2	R _A -R _n	R'o-R'n	R'0"2-R'n"2	
100 N	mm 6 203	mm 8.606	mm 9.606	mm 4 050	mm 4.252	N/mm 31.000	N/mm	N/mm	
102 3977,718	6,172	8,384	16,889	4,192	8,445	33,330	474,429	948,857	Kunde
103 4194,656	6,052 5,931	8,264 8,143	25,153 33,296	4,132 4,071	12,576 16.648	35,848 38,572	507,607 543,221	1015,214 1086,443	
105 4664,671	5,810	8,022	41,318	4,011	20,659	41,520	581,462	1162,924	Nr.:
106 4919,074 107 5187,352	5,690 5,569	7,902 7,781	49,220 57,001	3,951 3,891	24,610 28,500	44,713 48,173	622,536	1246,071 1333,332	D-1-102 22 04 2000
108 5470,261	5,448	7,660	64,661	3,830	32,331	51,925	714,096	1428,192	Datum: 23.04.2009
111 5768,600	5,320	7,540	72,201	3,770	36,100	22,331	765,091	1530,181	Name: Jahn FoA= 8625 , Tic= 1170
112 Re :		55,997 N 2676 001 N	l/mm						
114 x(f) :		1,055	4						
115 S(prog.i.d) : 116 Summa S(pro	aid):	6,293 n	nm nm						TioA= 924
117 a :	g.i.u) .	-0,121 n	nm						
118 119 G E B B Ü D	ER AHLE KA	ARISTHAL							
120 Datum :	23.04.2009								FPE = 5769 RE = 56
121 Zeichen : 122	Jann								
123									F= 4394
124									
H + > > Start)	Kennlinienberechn	ung / Mini-bloc-Fei	der (progressiv) / Mini-bloc-Fed	ler (linear) 🖌 SP - F	eder (Di zylindrisch)	/ SP - Feder (De	zylindrisch) 🖊 S	SP-Feder(D zylindrisch) FPA= 3772 L= 180
🗄 Zeichnen 👻 🔓 🛛 Ai	toFormen • 🔪 🔌		4 🗘 🗕 🛛	🛯 🧆 • 🚄 • 🛓	• = = ; •	—			FuA= 1385 Sa-e= 46,00
Bereit		C Davashava		- Cardada ana da	1	0.F. 1. 10	Delement -	e	$\mathbf{LPA} = \frac{795}{725}$
- Start Start	with INX Nastran	Berechnung und	a realK	reaemerechnung	Micro	sont Excel - 1311	Pokument1 - I	NUTUSOTI W	Lo= 319.7

Evaluation of geometry data and characteristic curve

Tooling Algorithm

CAM link to tool design

Finite Element Simulation

Model of a Miniblock-Spring

FEM Simulation

FEM simulation helps to analyse stresses (bending and torsion stresses) within spring wire during designing

FEM Simulation

CAD (Pro-Engineer)

Tooling / Prototype Development

Product development is close to series production

Checking deflection curve and load during prototype development

3-D Measurement; DEA/Hexagon

Capturing geometry data of the real spring, feedback into FEM

3. The Ahle Manufacturing Process

Producing Springs from Steel Bars

Taper Wire

Chargen Ste	mnol	n Zoich	Ne	1790 4	Toile Nr :								
Chargen - Ste	Inhei	n. Zeichn. Nr 1780.4 Ieile Nr.:											
Schrift:		A 4 -16 DIN 30640											
n. ZeichnNr1779.4													
Text:		Ch-Nr.				Ahle Logo 😗							
Schrift:		DIN		30640	h = 4 mm								
0,5 mm tief einge	eprägt				ZD4								
= wird nach dem □ lang 32 70 Wickelvorgang abgetrennt (Stempelabstand):													
Ø 3,00 ±0,08		ø 4,5 0	±0,05			Ø 3,00 ±0,08							
(325)	(335)	(10	0)	(335)	37	75 ± 2,0							
				4	710 ± 2,0								
	4	± 2,0											
1145 ± 2,0													
	1470	± 2											
Stat	okrümmung:		Toleranz für den:										
J		- - -	kleinen Ø-Bereich im dünnen Teil										
	`	<u> </u>	bis	12 mm Ø ±	0,08								
н	h		bis 15 mm Ø ± 0,12										
bis 2000	0 - 30		großen Ø-Bereich										
bis 3000	0 - 60		bis	15 mm Ø ±	0,05								
bis 4000 bis 5000	0 - 90 0 - 120		bis	0,07									
Ziehstein-Ø		Einsa	atz-	Werkstoff	Festigkeit	Gefüge							
Spantiefe Vorschneider	S1	materi	al-Ø	C FA BIC - MA	N/mm ²	CK7							
Spantiere Fertigschneid	ler S3			0 55 Cr 3	660-770	GKZ							
Einsatzgewicht des Sta	bes kg	mr	n	50 Cr V4	660-770	GKZ							
Fertiggewicht des Stab	es kg	Oberfläche	ngüte :	nach Grenzmus	ster ZD								
Lineal-Nr./ ProgrNr.													
Änderungen:		Ersatz für:											
		Gehört zu:											
O - huter us area du			Kunden-Nr.:										
Schutzvermerk					i eile-Nr.:								
nach DIN 34	N AHLE		ZeichnN	ir.:									
beachten Maßstab:	Gebrüder Ahle	51789 Lindlar	Datum:										
เพลเอรเสม.	Paidaaitig kani	oohor 64	ah		Datum:								
ohne	Delaseitig Koni	Name:											

Typical bar drawing (taper wire)

Karsten Landwehr, Key Account © Gebrüder Ahle GmbH & Co.

Production of taper wire

Reducing the material in a combination of drawing and peeling processes

Coiling Process

Coiling of springs

Heat Treatment

Heat treatment furnace with controlled atmosphere

4. Miniblock Springs, Summary

Requirement: Deflection Line

Execution of every required deflection curve

The Ahle process enables the development and production of chassis springs with a rate ratio of 1:3!

$$Rate = \frac{F}{S} = \frac{G \cdot d^4}{8 \cdot D^3 \cdot n}$$

Requirement: Light-Weight Design

Solution: The wire diameter can be adjusted to the stress in this area. As soon as smaller coils have settled, the stress in these coils is reduced. The wire diameter of these coils is thus designed with a smaller diameter.

Result: light-weight design

The Miniblock-Spring is the lightest spring from a physical point of view and offers the lowest block length.

Requirement: No Coil Contact

No coil contact – no noise, no surface damage!

Requirement: Small Installation Space

Karsten Landwehr, Key Account © Gebrüder Ahle GmbH & Co.

315.00mm

Block length: 47.30mm

=15% of the free length L₀

Karsten Landwehr, Key Account © Gebrüder Ahle GmbH & Co. 47.30mm

315.00mm

Requirements

- **1.** (Progressive) Characteristic Curve ✓
- 2. Light Weight Design
- 3. Packaging Minimisation
- 4. No coil contact

5. Super Progression

- **6.** Defined Force Line Piercing Points \checkmark
- Side load minimisation (piercing points in the spring axis)
- Offset (piercing points are outside of the spring axis)

5. New Developments/ Potential of Springs with Non-Constant Wire Diameter

New Development: Mini SPF (Super-Progressive-Springs)

Applications (e.g.):

Rebound spring Simulator spring

The Ahle process makes it possible to develop and produce superprogressivesprings with a rate ratio of up to zu 1:10!

Characteristic curve of a Mini –<u>Super-</u> <u>Progressive Spring (Mini-SPF)</u>

Comparison: Mini SPF vs. **Helical Compression Spring**

Different springs with identical properties:

Material, force, initial rate, end rate, outer diameter = constant

Benefit of non-constant wire diameter!

S AHLEFEDERN

Requirements

- **1.** (Progressive) Characteristic Curve ✓
- 2. Light Weight Design
- 3. Packaging Minimisation
- 4. No coil contact (noise elimination) ✓
- 5. Super Progression
- 6. Defined Force Line Piercing Points
- Side load minimisation (piercing points near spring axis)
- Offset (piercing points outside of spring axis)

Objectives / Benefits of AHLE Solution

- Reduction of height / length of the spring (improved pedestrian protection!)
- Optimised positioning of the shock absorber system

SAHLEFEDERN

- Reduced weight of spring
- Easier assembly of the shock absorber system

Side Load Correction

Current situation

The side load of a spring depends on its geometric framework conditions

Solution:

Selected wire sections are "thickened" to influence the direction of the force line!

Sketch: modified helical compression spring

Side Load Correction

Objective achieved by:

Non-constant wire diameter

Sketch: modified Miniblock-Spring

Side Load Correction

Schematic drawing of a bar with partially thickened wire sections

Side Load Determination

Side Load Minimization

Karsten Landwehr, Key Account © Gebrüder Ahle GmbH & Co. **Optimized force line of action of a modified Miniblock-Spring)**

Influencing the Force Line of Action

Ahle – Side-Load Spring without bar modification

Influencing the Force Line of Action

Ahle – Side-Load Spring with bar modification

Current Status of Developments

- Series production of partially thickened bars is possible
- Confirmed functionality of the Ahle Side-Load Spring

• Compared with series side-load springs the Ahle-Solution shows up to 50% larger shifts of the piercing points

6. Summary

(Progressive) helical compression springs with taper wire show the following properties:

- > Optimum use of material
- Low weight
- Small packaging
- No coil contact
- > High progression in only one component possibility to influence the force line

Thank you for your attention

