

NORTH AMERICAN PICK-UP RIDE ANALYSIS

Matthew Taylor - Principal Engineer Vehicle Dynamics Contribution by Ricardo Prado of Metalsa

INTRODUCTION

- Requirement to understand ride limitation of large US pick-up trucks
- High volume strong selling vehicle competitive market place
 - domestic product
 - imported vehicles
- Do we understand the cause of the ride deficiencies

INTRODUCTION

- Decision drivers for truck chassis
 - direction from suppliers
 - perception of consumer
 - performance

WHERE ARE THE OPPORTUNITIES?

- Two ways to gain a financial advantage
 - better product for same money (less than competition)
 - same product for less money (less than competition)

WHAT IS OUR DIRECTION?

- Our aim was to match the competition for less money
 - understand the system
 - do not just follow the crowd

BENCHMARK

- Ride and handling comparison of six trucks
 - three domestic market, three imported
- Goal of this report ride performance
 - target vehicle perceived worse primary ride
 - target vehicle perceived worse secondary ride

PRIMARY RIDE COMPARISON

- Benchmarks 4 and 5 were thought to have car-like ride when unladen
- Ride centres of most US trucks were not axle aligned
 - significant spread of ride frequencies
 - axle centred strategy improves accuracy of front / rear type ride frequency calculation

Benchmark 1

Benchmark 2

■ Benchmark 3

Benchmark 4

Benchmark 5

Target

PRIMARY RIDE COMPARISON

- Benchmarks 4 and 5 were thought to have car-like ride when unladen
- Ride centres of most US trucks were not axle aligned
 - significant spread of ride frequencies
 - axle centred strategy improves accuracy of front / rear type ride frequency calculation
 - problems with primary ride strategy of target vehicle apparent

PRIMARY RIDE CONCLUSION

- Potential to improve axle centre strategy limited by vehicle's mass, inertia and wheelbase ratio (dynamic index)
- Modification of wheelbase outside scope of project
 - modification of spring tune
 - significant recalibration of dampers

SECONDARY RIDE - OVERVIEW OF CONCERN

- Secondary ride (shake) identified as much more significant problem
 - dominated by axle roll and hop (in- and out- of phase wheel hop)
 - in phase of particular problem
- Strong couple to vehicle chassis common to all beam axle trucks tested

SECONDARY RIDE - MODAL STRATEGY

- Axle bending frequency clearly not contributory
- Repositioning of chassis modal behaviour impractical
 - below 6Hz to separate from axle heave
 - above 13Hz to separate from axle bounce
- One vehicle attempted to lower chassis frequency
 - subjective appraisal notes persistent shake

SECONDARY RIDE - OPERATING SHAPES

- Operating shape analysis confirms similarity
 - modal positioning of vehicles very similar
 - amplitude of target vehicle significantly greater than benchmark

SECONDARY RIDE - OPERATING SHAPES

- Operating shape analysis confirms similarity
 - modal positioning of vehicles very similar
 - amplitude of target vehicle significantly greater than benchmark

SECONDARY RIDE - OPERATING SHAPES

- Operating shape analysis confirms similarity
 - modal positioning of vehicles very similar
 - amplitude of target vehicle significantly greater than benchmark
- Solution is to understand cause of higher amplitude

SECONDARY RIDE - DIFFERENCES

- Modal decoupling is not cost effective
 - lower axle mode too low
 - high axle mode too high
- Reduction in target vehicle axle mass will reduce excitation energy

SECONDARY RIDE - REDUCED AXLE WEIGHT

- Nothing in findings to support removal of Hotchkiss system
- Combination of two concepts
 - low cost, low complexity Hotchkiss
 - minimised weight, rigid beam De-Dion

SECONDARY RIDE - REDUCED AXLE WEIGHT

- Beam no longer carries differential device
- Reduced weight, large section beam pressing
- Improved camber and toe stiffness
- 'Unsprung' mass reduced by 25%
- Excitation energy reduced by 3dB

RESULT OF MODIFICATION

- Subjective ride rating improved by 1.5 points
- Objective results show significant reduction in axle energy
- As anticipated, modal behaviour unaltered

- Increased acceleration response at seat rail dominated by front axle activity
 - modifications to chassis have altered front axle coupling
 - opportunity to re-tune mass damper

CONCLUSIONS

- Primary ride compromised by poor inertia mass relationship
 - can be improved in limited sense by damping
- Axle activity and modal behaviour of chassis not realistically separable
- Secondary ride subjectively improved by reduced mass axle
- Simple solution represents cost effective fix

