WHERE INSPIRATION AND INNOVATION COMBINE
NORTH AMERICAN PICK-UP RIDE ANALYSIS

Matthew Taylor - Principal Engineer Vehicle Dynamics
Contribution by Ricardo Prado of Metalsa
INTRODUCTION

• Requirement to understand ride limitation of large US pick-up trucks
• High volume strong selling vehicle – competitive market place
 – domestic product
 – imported vehicles
• Do we understand the cause of the ride deficiencies
• Decision drivers for truck chassis
 - direction from suppliers
 - perception of consumer
 - performance
WHERE ARE THE OPPORTUNITIES?

- Two ways to gain a financial advantage
 - better product for same money (less than competition)
 - same product for less money (less than competition)
WHAT IS OUR DIRECTION?

• Our aim was to match the competition for less money
 – understand the system
 – do not just follow the crowd
BENCHMARK

- Ride and handling comparison of six trucks
 - three domestic market, three imported

- Goal of this report – ride performance
 - target vehicle perceived worse primary ride
 - target vehicle perceived worse secondary ride
• Benchmarks 4 and 5 were thought to have car-like ride when unladen
• Ride centres of most US trucks were not axle aligned
 – significant spread of ride frequencies
 – axle centred strategy improves accuracy of front / rear type ride frequency calculation
- Benchmarks 4 and 5 were thought to have car-like ride when unladen
- Ride centres of most US trucks were not axle aligned
 - significant spread of ride frequencies
 - axle centred strategy improves accuracy of front / rear type ride frequency calculation
 - problems with primary ride strategy of target vehicle apparent
- Potential to improve axle centre strategy limited by vehicle’s mass, inertia and wheelbase ratio (dynamic index)
- Modification of wheelbase outside scope of project
 - modification of spring tune
 - significant recalibration of dampers
• Secondary ride (shake) identified as much more significant problem
 – dominated by axle roll and hop (in- and out-of phase wheel hop)
 – in phase of particular problem
• Strong couple to vehicle chassis – common to all beam axle trucks tested
• Axle bending frequency clearly not contributory
• Repositioning of chassis modal behaviour impractical
 – below 6Hz to separate from axle heave
 – above 13Hz to separate from axle bounce
• One vehicle attempted to lower chassis frequency
 – subjective appraisal notes persistent shake
• Operating shape analysis confirms similarity
 – modal positioning of vehicles very similar
 – amplitude of target vehicle significantly greater than benchmark
Operating shape analysis confirms similarity
- modal positioning of vehicles very similar
- amplitude of target vehicle significantly greater than benchmark
Operating shape analysis confirms similarity
- modal positioning of vehicles very similar
- amplitude of target vehicle significantly greater than benchmark

Solution is to understand cause of higher amplitude
• Modal decoupling is not cost effective
 – lower axle mode too low
 – high axle mode too high
• Reduction in target vehicle axle mass will reduce excitation energy
• Nothing in findings to support removal of Hotchkiss system
• Combination of two concepts
 – low cost, low complexity Hotchkiss
 – minimised weight, rigid beam De-Dion
Secondary Ride – Reduced Axle Weight

- Beam no longer carries differential device
- Reduced weight, large section beam pressing
- Improved camber and toe stiffness
- ‘Unsprung’ mass reduced by 25%
- Excitation energy reduced by 3dB
RESULT OF MODIFICATION

- Subjective ride rating improved by 1.5 points
- Objective results show significant reduction in axle energy
- As anticipated, modal behaviour unaltered
FURTHER WORK

- Increased acceleration response at seat rail dominated by front axle activity
 - modifications to chassis have altered front axle coupling
 - opportunity to re-tune mass damper
CONCLUSIONS

• Primary ride compromised by poor inertia mass relationship
 – can be improved in limited sense by damping
• Axle activity and modal behaviour of chassis not realistically separable
• Secondary ride subjectively improved by reduced mass axle
• Simple solution represents cost effective fix
WHERE INSPIRATION AND INNOVATION COMBINE