

ASAM Technology Forum 7th May 2008

Answer to the Foreseeable Flood of Diagnostic Data for the Life Cycles of Vehicles

Anna Lombardo, Marketing Manager In2Soft GmbH

Introduction

In2Soft GmbH (Anna Lombardo)

Reasons for Data Growth

Main Factor for Data Growth

- Individual Diagnostic Descriptions
 - Diagnostic information is described ECU specific
 - E.g.
 - No generic DTC table valid for the whole vehicle project
 - Detailed description of measurements
- Data-Driven Diagnostic Functionality
 - Diagnostic functionality held outside the ECU and tester implementation
 - E.g.
 - Acuator (Input/Output) Control Services

Life Cycle of Vehicle

 Increase of Project Size (in MB) for one vehicle with 5 ECUs described in ODX

based on information of a German OEM

2004

2006

2008

Consequences for the User

- Memory Load and Performance
 - Hardware for diagnostic systems can not be updated (with more memory and faster processors) frequently
 - Increased performance requirements
 - E.g. Parallel communication / flashing
- All Diagnostic Tools are effected!
 - Editors and other tools for development that process
 ODX data directly
 - Converters to other formats
 - Testers and other diagnostic modules using binary formats

Best Possible ODX Design

- Reducing Redundancy
 - Using the ODX Object-Oriented approach
 - Considering vehicle's life-cycle within the design
- E.g.
 - VisualODX Optimizer reduces project sizes by >50%

- Non-Optimised ODX Data Project (in MB)
- Optimised ODX Data Project (in MB)

Source:

based on information of a German OEM

Handling ODX Data Intelligently

- For tools processing ODX data directly
 - E.g. Editors, Checker, Formatter, Converters, etc.
- How?
 - Loading only required data (logical links)
 - Using advanced data management technology

• E.g.:

	Common Parser	VisualODX Tools
Project Loading Time	6 :1	
Memory Requirement Factor	12	5

ODX Optimised Binary Format

- For high-performance diagnostic use cases
 - E.g. production and service testers, flash tools
- How?
 - Reducing redundancy
 - Using ODX Object-Oriented approach for the binary format
 - Providing modularity
 - Alowing exchange of individual data objects
 - E.g. comunication parameters
 - Optimising data for execution
 - Eliminating the transformation step between binary data and runtime data objects

Data Reduction Overview

- Step 1:
 - VisualODX Optimizer reduces project sizes by >50%
- Step 2:
 - ODX Data are transformed into ODX-optimised Binary

- ODX Project
- Optimised ODX- Project
- ODX-Optimised Binary

Source:

based on information of a German OEM

In2Soft GmbH (Anna Lombardo)

 ∞

Summary

- The diagnostic data will grow drastically!
- Answer to the Foreseeable Flood of Diagnostic Data for the Life Cycles of Vehicles:
 - ODX Design
 - Intelligent Loading and Processing Mechanisms
 - ODX Optimised Binary Format

Thank you!

