
1

Early Robustness Validation of 

Automotive FlexRay Topologies 

through a Simulation-Based Method

Thorsten Gerke           

Technical Marketing Europe 

Synopsys GmbH



2

Overview 
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• Robust Design Method & Models

• Critical Points of FlexRay‘s EPL
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Introduction
FlexRay Protocol 

• New In-Vehicle Networking standard

• Developed for safety-relevant applications like x-

by-wire and control systems

• Time triggered communication cycle (real time 

condition)

• High-speed transmission rate (10 MBit/s)

• Fault tolerant behavior (Dual channel)
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Introduction
Future In-Vehicle Network Architecture
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Basics
Logical vs. Physical Network Architecture
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Motivation
FlexRay EPL Topology Challenges

• Topology guidelines
– FlexRay‘s EPL specification provides rough 

guidelines 

– EPL spec kept flexible for system optimization

– Analysis of EPL criteria requires the validation of the 
specific topology 

• Different architecture compromises
– Active/Passive star

– Linear bus

– Central/decentral termination

• Impact on signal integrity no longer predictable
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Motivation
FlexRay EPL Topology Challenges (2)

• Variants
– Number of ECUs depends on vehicle equipment

– Not all variants are available before Start Of 
Production (SOP)

• Changes
– Cost intensive

– Time consuming (critical when close to SOP)

• Simulation is the only choice to sufficiently 
evaluate topologies in the early development 
phase
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Basics
FlexRay Topology Verification
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Basics
Overall Goal – FlexRay Physical Layer
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Simulation
Simulation Environment & Models

• FlexRay network simulated in Saber

• Required simulation models

– ECU

 Bus interface (analog)

 Transceiver

 Common mode choke

– Transmission line

– Ferrites

• Models based on MAST Hardware Description 

Language (HDL)
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Simulation
ECU Interface Model
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Simulation
FlexRay Transceiver Model

• TJA1080 FlexRay transceiver

– Developed by IC manufacturer (NXP 
Semiconductor)

• Behavioral model according to data sheet

– Mode transitions

– Analog behavior at connection pins

– Transmitter and receiver asymmetries

• Support of worst case behavior

• Specially developed for system simulation
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Simulation
Transmission Line Model

• Developed based on spec 
from FlexRay EPL working 
group

• Equations defined in 
frequency domain

• Wire length as model 
argument

• Skin Effect

• Support of both differential 
and common mode

• Validated by measurements

Vehicle CablingTransmission Line
 Cable geometry
 Material properties 
 Cable position in the vehicle

Transmission 
Line Parameters

RLCG Matrix

Design Set Up

 Matrix assignment

 Wire length

 Connection to network nodes

Field solver

Model integration

Cable abstraction

Model 
parameterization
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Simulation
TxLine – Simulation vs. Measurement

• Validation test 
benches defined by 
FlexRay EPL working 
group

• 96m cable length

• High/Low impedance 
terminated branches

• Unterminated 
branches

• Perfect matching 
between simulation 
results and 
measurements

Measurement
Simulation
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Critical Points of FlexRay’s EPL
Validation Criteria

• Critical aspects of the signal integrity of a 
FlexRay™ network
– Signal propagation delay

– Asymmetric delay

– Bit deformation due to ringing and reflections

– Truncation of transmission start sequence 

(Transition idle to active)

– Frame Stretching due to ringing after last bit 

(Transition active to idle)
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• Propagation delay  Synchronization precision 

relevant

– Time lapse between the falling edges of transmitter and 

receiver nodes in the network

– Depends mainly on the topology of the path
 Bus load

 Temperature

 Supply voltage variations

 Simulation is the only choice for investigation!

• The FlexRay protocol defines a constraint for the 

propagation delay between two nodes n and m

dPropagationDelayM,N ≤ cPropagationDelayMax

Critical Points of FlexRay’s EPL
Propagation Delay
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• Relevant for correct signal decoding 

• Mismatching between negative and positive edge 
propagation delays of the bus drivers and active stars 

• Non-symmetric split termination networks

• Non-balanced ESD protection elements 

• The greater the total asymmetry of the topology path 
the lower the robustness against injection of EM fields

Critical Points of FlexRay’s EPL
Asymmetry
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• Each communication element starts with the so called 

Transmission Start Sequence (TSS) 

• Relevant for the transition from bus idle to bus active

• During the transition from bus idle to active the 

sequence of data can be shortened

– Activity detection in the receiver BDs and Active stars

– Filter time for activity detection plus internal logic

• Sufficient TSS length depends on the topology

Critical Points of FlexRay’s EPL 
Truncation of TSS
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Critical Points of FlexRay’s EPL 
Transition Active to Idle
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• The channel idle recognition 
point (CHIRP) is shifted
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Application Example
Round-Robin Communication

• Six ECU nodes

• Passive star architecture

• Round-Robin 
communication

• Low impedance split 
termination  nodes with 
the largest distance 

• Ferrites as passive filter 
elements in the center of 
the star
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Application Example
First Scenario - Test Bench
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Application Example
First Scenario - Signal Quality

• Voltage peaks magnitudes 
in the range of -296mV 
and 389mV

• Transceiver nominal input 
threshold (225mV)

• Peaks are filtered through 
low pass filter

• Considering worst case 
threshold (150mV) this 
may result in multiple 
switching of the Rxd signal 

uBus ECU E

Rxd ECU E

-296mV

389mV
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Application Example
First Scenario - Ringing  Active to Idle 

The maximum allowable duration of this effect will be 
prescribed  in the physical layer specification.

• Repeated switching 
on the digital RxD 
pin 

• The potential idle 
start event is delayed 
significantly, in this 
case 0.4 us 

• The channel idle 
recognition point 
(CHIRP) is shifted
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Application Example
First Scenario - Asymmetric Delays

Other ECUs

time

Asymmetric 
Delay

Transmitter
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1

0

1

0

• Limits for asymmetric
delays defined in FlexRay
EPL Spec

• Need to be evaluated for
complete Round Robin
communication and each
ECU

• Manual evaluation could
be very time consuming

• Automated approach is
used to generate Matrix
written in Excel
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Application Example
Asymmetric Delays – Automation
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Application Example
Component Tolerances

• Only the nominal case was analyzed so far but...
– All components are associated with tolerances

– Impact of signal integrity can be significant

• Transceiver tolerances have significant impact on overall 
signal integrity
– Differential input voltage thresholds

– Detection of logical levels (correct signal decoding)

– Differential output voltage levels

– Signal propagation delays through transceiver

• May have a great impact in case of larger reflections

• Very important for the evaluation of the asymmetric 
delays
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Application Example
Second Scenario – Nested Simulation

• Same Round Robin 
communication as 
before

– Same transmission 
rate as before

– Same bit pattern

• Transceiver tolerances

• Nested looped 
simulation runs
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Application Example
Second Scenario - Signal Quality 
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Application Example
Second Scenario – Asymmetric Delays

• Tolerances impact 
asymmetric delays 
significantly

• Maximum value is now 
22.5ns

• 3x larger compared to 
nominal case (-7.6ns)

• Considering RF 
reserve the topology is 
close to its limit 

(30.75 ns )
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Application Example
Third Scenario - Ferrites as Filter
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Application Example
Third Scenario - Signal Quality
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Summary

• Verification of concepts in the early stage of the design 
process before real network is available

• Improved quality of network topology against possible 
issues

• System simulation allows to reduce development time 
through a partially automated evaluation process 

• Deep system understanding
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Thank you for your attention!


