Determination Of Fire Effluents From Products On Railway Vehicles

Beth Dean Technical Development Officer Bodycote Warringtonfire

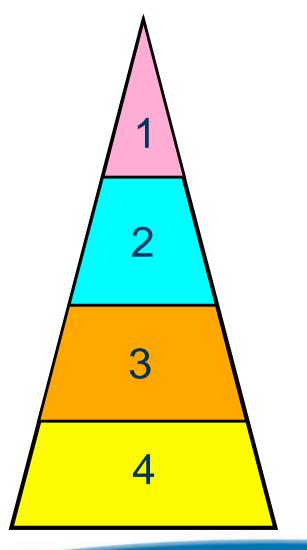
beth.dean@bodycote.com

Rail Interiors Expo Open Forum Amsterdam on 6th November 2008

- Since the early 1990s, the European Commission has been developing Directives for the operational and technical harmonisation of the European rail system
- The new Rail Directives should allow train operators and train builders an open market with a standardised rail infra structure and harmonised standards for all products fitted to European trains.

Introduction: 4 Layer System For Rail

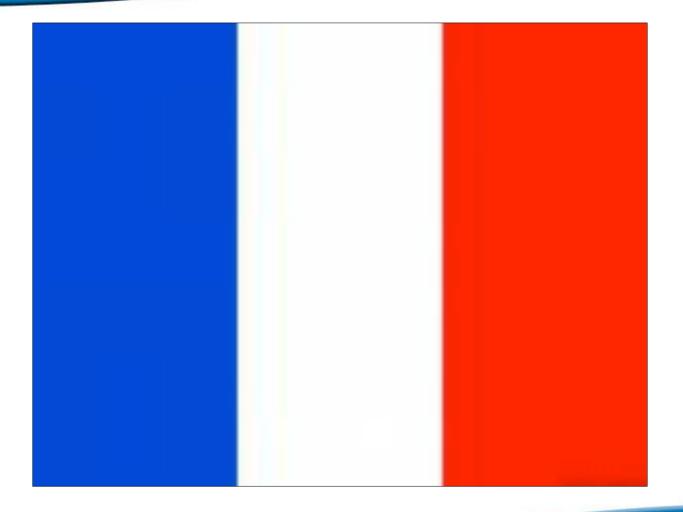
Safety In Europe


Rail Directives – railway legislation that is law.

Made by European Commission.

- Dechnical Specification for Interoperability (TSI) that are the regulatory statutes of the law. Made by European Commission and European Railway Agency (ERA).
- Standards (ENs) that are the European rules.

Made by CEN and CENELEC fire committees.


Cocal and Regional rules; e.g. London Underground and SNCF/RATP

- Directives written, an essential requirement is that the choice of materials must aim to limit the generation of toxic fumes
- **Conventional rolling stock = Existing national requirements**
- High speed rolling stock = HS TSI states that pending publication of EN 45545-2, material deemed to be acceptable must meet one of five national standards National standards recognised:
 - British
 - French
 - German (with toxicity tests)
 - Italian
 - Polish
- ➡ The aim is that in the future EN 45545-2 will be used to decide if materials are safe for use in terms of their reaction to fire properties

Current: French Test Method

- INF F 16-101 and NF F 16-102 provides the Reaction To Fire requirements
 - NF X 70-100 details the toxicity test method
 - Part 1 Analysis methods
 - Part 2 Burn procedure
 - Gases analysed: CO, CO₂, HF, HCI, HBr, SO₂ and HCN

- NB. No requirement to measure NO_x
- Tube furnace technique
- Certifer round robin approval scheme for test laboratories

Current: French Test Method

1 1g specimen

- Tube furnace 800°C for electrical items & 600°C for all other materials
- # 2L/min air (well ventilated)
- 20 minutes: specimen in heated zone
- After specimen removed, test continues until tube furnace clear
- All products of combustion collected for analysis
- Triplicate testing for each gas

Current: French Test Results

- Units of concentration = mg/g Total mass of toxic gas emitted (mg) per 1g of product tested
- Calculate Conventional Index of Toxicity (CIT)
 - Weighted summation of the species analysed
- Result must be combined with the smoke density results obtained to NF X 10-702 in order to obtain an F rating
- ♯ F0 best, F5 worst
- F rating requirement is found in NF X 16-101 and NF X 16-102, dependent upon the products use and the rolling stock operation category

Current: British Test Methods

BS 6853 provides the Reaction To Fire requirements

- Annex B details the toxicity test methods
- Gases analysed: CO, CO₂, NO_x, HF, HCI, HBr, SO₂ and HCN
 - Annex B.1: NF X 70-100 tube furnace Small electrical components, cables and minor usage products

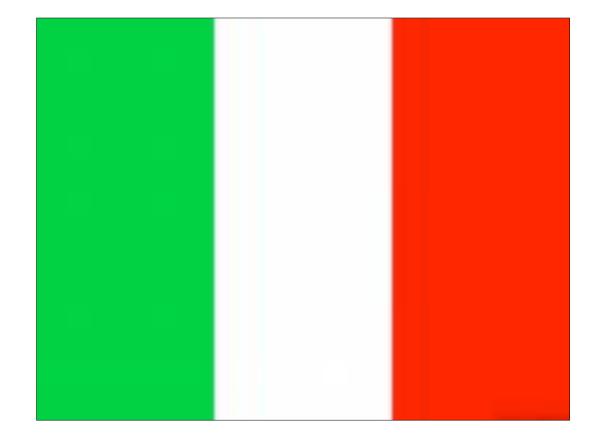
NB. Annex B.1 burn and analysis procedures identical to NF X 70-100 for French rolling stock

Annex B.2: Smoke chamber analysed by a number of methods

Products with significant surface areas (walls, ceilings, floorings, seat trims, etc.)

Current: British Annex B.2 Test Method

- Sealed 0.5m³ chamber (ISO 5659-2)
- Test mode: 25kW/m² with a pilot flame
- First specimen tested to provide smoke density versus time curve
- From curve, determine time products of combustion should be sampled from subsequent three specimens
 - Time at which 85% of the peak smoke emission is reached



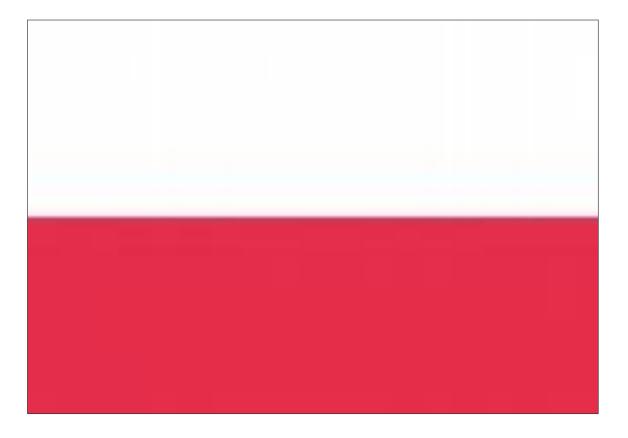
Current: British Annex B.2 Test Results

- **\ddagger** Units of concentration = g/m²
- Mass of toxic gas emitted (g) per m² of product tested
- Calculate R value
 - Weighted summation of the species analysed
- Lower the R value the better
- R value requirement is found in BS 6853, dependant upon the products use and the rolling stock operation category

Current: Italian Test Methods

UNI CEI 11170 provides the Reaction To Fire requirements

- NF X 70-100 details the main toxicity test method (same as France)
- CEI 20-37 part 7 details the electrical components toxicity test method
 - Gases analysed: CO, CO₂, NO_x, HF, HCI, HBr, SO₂, HCN, H₂S, NH₃, H₂CO, C₃H₃N
 - Tube furnace technique
 - Tube furnace 800°C
 - Flow rate and test duration same as NF X 70-100
- EN 50305 details the cable components toxicity test method
 - Gases analysed: CO & CO₂ (plus SO₂, HCN & NO_x where appropriate)
 - Must be halogen free (proven to specified fire test methods)


Current: Italian Test Results

- **#** NF X 70-100
 - Calculations as France
- **#** CEI 20.37 Part 5
 - Units of concentration = mg/g

- Weighted summation of the species analysed to provide value
- **#** EN 50305
 - CO & CO₂ (plus SO₂, HCN & NO_x where appropriate)
 - Units of concentration = mg/g
 - Calculate ITC value, weighted summation of the species analysed
 - Halogen free
 - max evolution of HCI = 0.5% to EN 50267-2-1
 - min pH = 4.3 / max conductivity = 10.0μ S/mm to EN 50267-2-2
 - max fluorine content = 0.1% to EN 60684-2

Current: Polish Test Method

- PN-K-02511 provides the Reaction To Fire requirements
 - PN-K-02505 details the toxicity test method
 - Gases analysed: CO and CO₂ only
 - Analysis using colourimetric tubes
 - Sealed 0.5m³ chamber (different to ISO 5659-2 chamber)
 - Ig test specimen (in small pieces) in evaporating dish
 - Electric heater = 600°C
 - 5 minutes: products of combustion analysed

Current: Polish Test Results

- **Units of concentration = ppm**
- Weighted summation of the species analysed
 - 20[CO] + [CO₂]
 - Weighted summation < 1200ppm = T1</p>
 - Weighted summation between 1200 and 6000ppm = T2
- ➡ Weighted summation >6000ppm = No T classification given

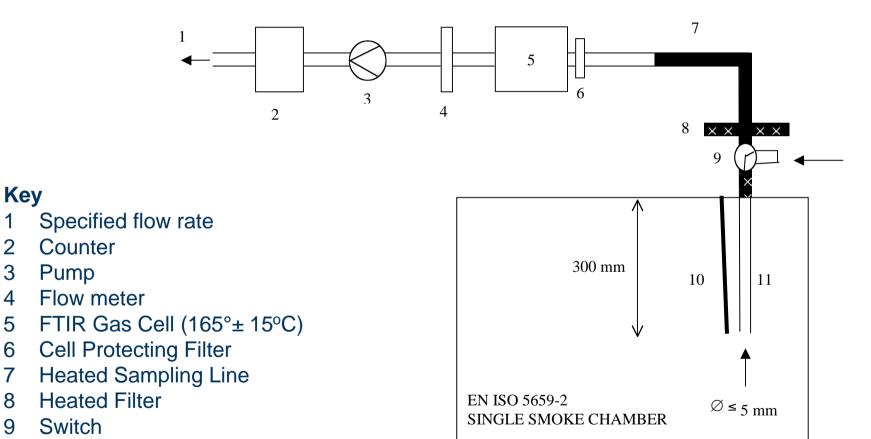
Bodycote warringtonfire

T classification requirement is found in PN-K-02511, dependent upon the products use and the rolling stock operation category

Current: German Test Methods

DIN 5510 provides the Reaction To Fire requirements

- Current issue of DIN 5510 does not include toxicity test method
 - HS TSI states use internationally recognised method
- End of 2008, DIN 5510 reissued
- Gases analysed: CO, CO₂, NO_x, HF, HCI, HBr, SO₂ and HCN
 - Method 1: CEN TS 45545-2 Annex C chamber test method, but
 - Analysis using colourimetric tubes (<80% FED limit) or other listed technique (eg. ion chromatography, FTIR, etc.)
 - Different calculation procedure to CEN TS 45545. Procedure based on fractional effective doses (FED)
 - Method 2: ISO 9705 hood method (seats only)
 - 100g paper cushion fire source
 - Gases collected throughout test duration
 - Total mass of gas produced throughout test duration



- CEN TS 45545-2 provides the Reaction To Fire requirements
 - Annex C details the toxicity test methods
 - Gases analysed: CO, CO₂, NO_x, HF, HCI, HBr, SO₂ and HCN
 - Method 1: Smoke chamber with FTIR spectrometry Products with significant surface areas (walls, ceilings, floorings, seat trims, etc.)
 - Method 2: NF X 70-100 tube furnace (always 600°C) Small electrical components, cables and minor non-listed products – NF X 70-100 tube furnace
 NB. Method 2 burn and analysis procedure identical to NF X 70-100 used for French rolling stock

Switch 9

Key

1

2

3

4

6

7

8

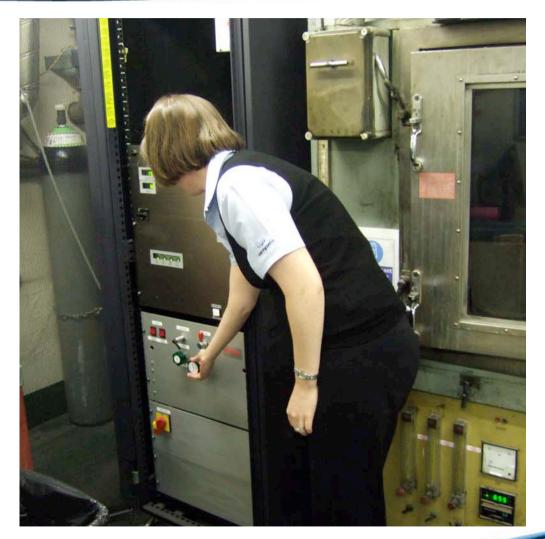
10 Thermocouple

Counter

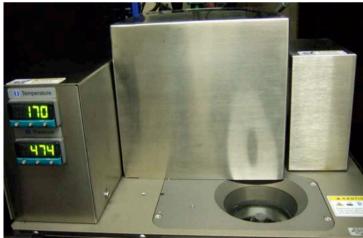
Pump

11 Sampling Point

Future: CEN TS 45545-2 Annex C

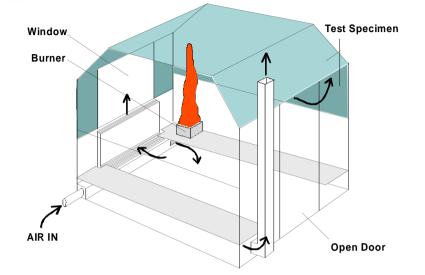

Method 1

- ISO 5659-2 sealed smoke chamber
- **Heating mode:**
 - 25kW/m² with a pilot flame Or
 - 50kW/m² without a pilot flame
- Smoke density versus time curve taken throughout test duration using photometric system
- 20 minutes test duration



Future: CEN TS 45545-2 Annex C Method 1

- 4 min and 8 min: concentration of toxic fumes measured using FTIR
- Fumes withdrawn from centre of chamber at 4 L/min
- Through heated filter, heated line, heated filter

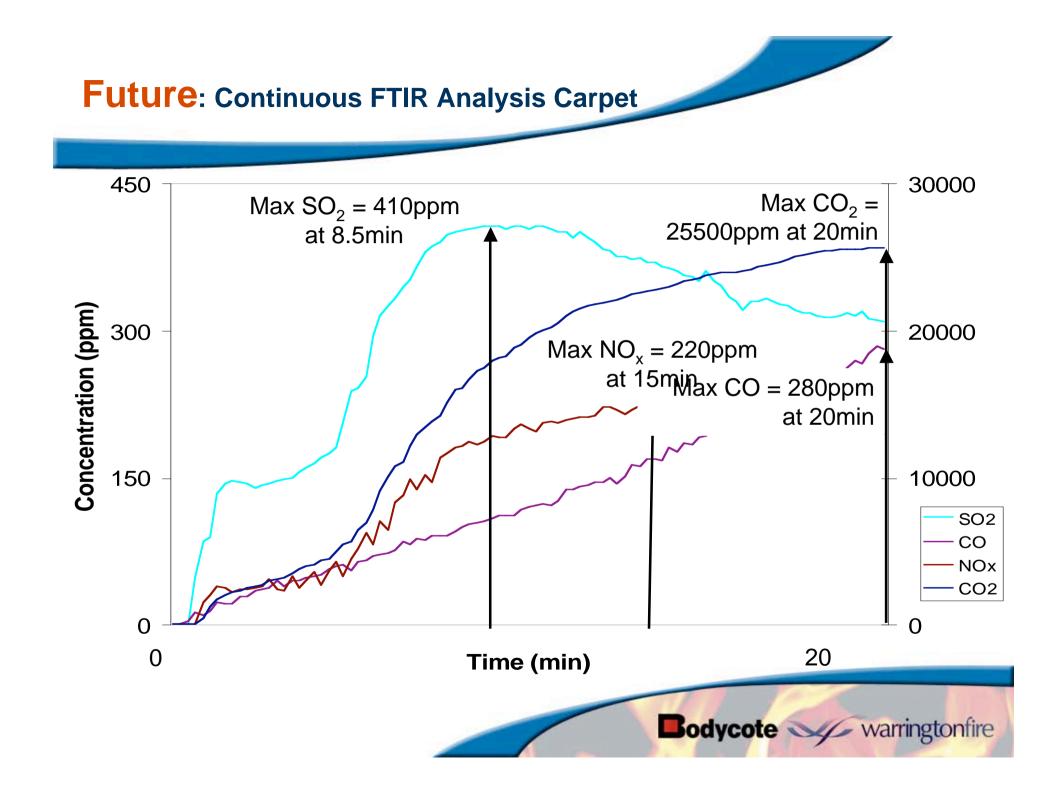

Future: Hazard Levels

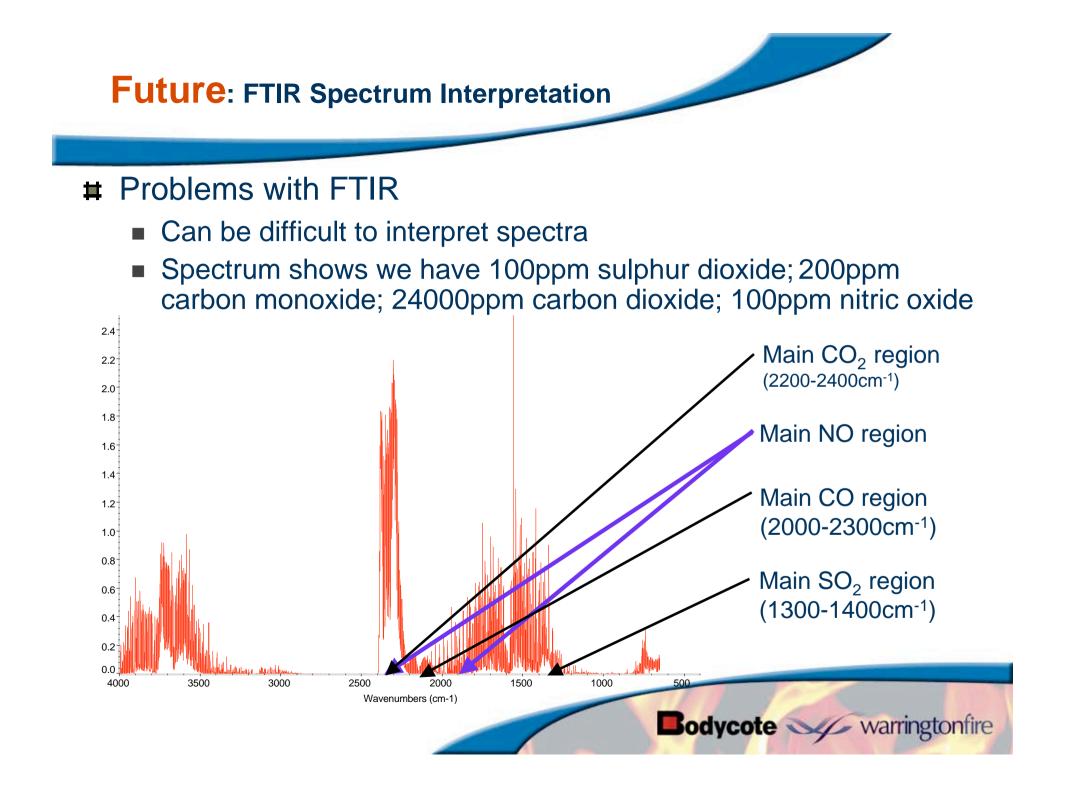
		Design	N	Α	D	S
Op. cat			Higher risk (escape time / furnishing) design therefore higher hazard			
	1	Higher risk (therefore hig	HL1	HL1	HL1	HL2
	2		HL2	HL2	HL2	HL2
	3	k (escape time) higher hazard	HL2	HL2	HL2	HL3
	4	me) rd	HL3	HL3	HL3	HL3

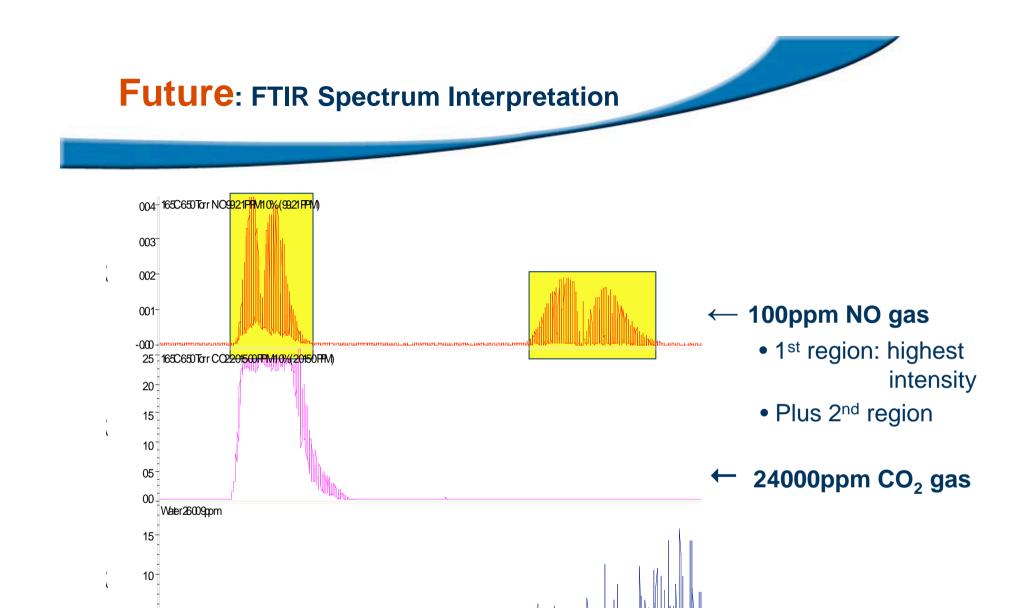
Bodycote warringtonfire

Future: Toxicity Criteria

- FIRESTARR European Commission research project designed to underpin EN 45545-2
- Real-scale tests and small-scale tests on railway products were carried out at Warrington Fire Research Centre.
- FIRESTARR did not include chamber test
- Real-scale test scenario = 150m³ SNCF vehicle
- Toxicity: subsequent zone modelling conducted
 - 8 minute sampling point
 - Limits calculated




Future: Why FTIR?


♯ FTIR

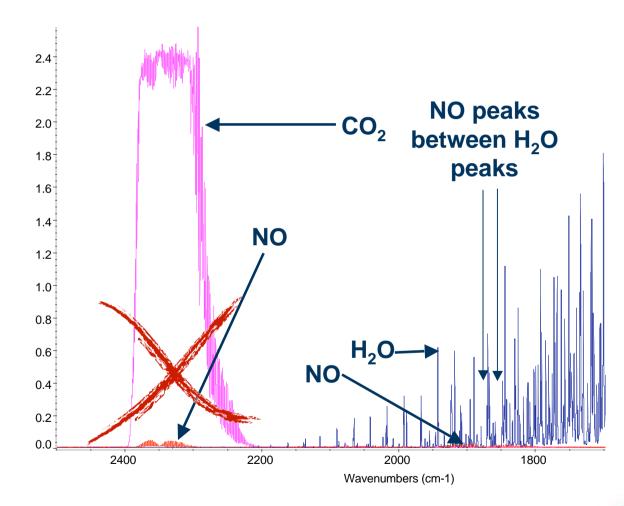
- One analysis method for all laboratories – remove variable between laboratories
- Has the ability to measure all gases of interest at one time
- Possibility for time versus concentration curves for each gas

2000

Wavenumbers(cm-1)

1800

05


00-

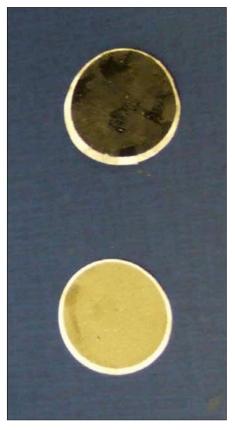
2400

2200

← 24000ppm H₂O vapour

Future: FTIR Spectrum Interpretation

1st region:


Carbon dioxide peaks at typical concentration swamps the first region of nitric oxide peaks

2nd region:

Need to see if any nitric oxide peaks are between the water peaks

Future: FTIR Toxicity Summary

- Toxicity testing is an important and regulated topic
- FTIR offers opportunities for improvement
 for the future
- **#** Further FTIR research is required
 - Flow rates
 - Filtering considerations
 - Recycling of fumes upon analysis
 - Selection of regions for analysis
 - Intra-laboratory and inter-laboratory accuracy and precision checks

