Does Carnot's Cycle
have a
Long Road Ahead?

Engine Expo 6-8 May 2008, Stuttgart Open Technology Forum

Fuel Cells

The Perfect Automotive Power Plant?

or

The Emperor's New Clothes?

1824

Beethoven's 9th Symphony first performed

Carnot's Paper Published

'Refléxions sur la Puisance Motrice du Feu et Sur les machines propres a déveloper cette puisance '

Sadi Carnot: Aged 17 in 1813

 The 'Thermal Efficiency' of a perfect heat engine can be defined

 A basic engine cannot extract 100% of the thermal energy in fuel

 Note: today's automotive engines have around 35% best thermal efficiency

- Clermont steamer 1807
- 140 passenger capacity
- Outperforming land coaches and river sloops

Hydrogen plus Oxygen

Catalyst

Water plus electrical power

- World wide interest for all types
- Major focus for government establishments

- Major focus for automotive industries
- Annual expenditure: \$100's millions

 Complex chemistry in the cell and catalyst; currently uses empirical design rules

Too large; not robust; too expensive

Product acceptance tests for real world application not yet validated

- 'Thermal efficiency*' of an automotive fuel cell may be limited to 60% peak.
- BUT, a fuel cell can maintain this level of efficiency at low loads.
- An ICE has an efficiency of only up to ~40% peak.
- AND an ICE loses efficiency at low loads.

*More precisely, electrical output compared to chemical energy in the input

 Gas Turbine vehicles produced as prototypes

Stirling Engine projects

Wankel engine gets attention at 'Big Three'

Expenditure measured in \$100's millions

Rover Gas Turbine Car

Ford 'Big Red' GT Truck

Why the effort on alternative powerplants?

 Fear that ICE's would be 'killed off' by emission regulations from Clean Air Act of 1967

However!

 Advanced emission controls have kept ICE's at front

Will the Empire Strike Back Again?

 Can the Internal Combustion Engine keep the Fuel Cell at bay in the future?

Already in the 'pipe-line'

- Downsized and advanced boost schemes
- Combustion: 2nd Generation GDI, Dies-Otto, HCCI?
- Fuels: Sustainable bio-fuels and hydrogen
- Hybrid systems: 'plug-in' ICE and battery

Not yet 'exploited'

- Maximise use of fuel economy 'sweet spot'.....the IVT
- Braking energy recovery.....flywheels

- September 2006, Graz, Austria
 - MAN accumulated 400,000km in city buses with Hydrogen ICE's
 - BMW previously announced lease of V-12, 7 series cars. Bi-fuel H2 and gasoline
 - Ford comprehensive account of hydrogen engine and vehicle for E-450 airport bus

Installed Thermal Efficiency

- By 2010 (Argonne)
 - Optimistic value for diesel 45%
 - Optimistic values for fuel cell 60%
- BMW Chief Research Engineer
 - The H2 ICE could achieve.... 50%

 Note: a gain of 10-15% is not enough for large volume adoption of fuel cells. Hybrid diesel

~ 250 g/mile

Hybrid H2 Fuel Cell

~ 280 g/mile

• Hybrid H2 ICE

~ 310 g/mile

• Note:

- Diesel fuel is low sulpher
- Bio-diesel will reduce effective GHG's even lower
- Hydrogen from natural gas WITHOUT CO² sequestration. Renewable / nuclear hydrogen ~ 50 g/mile.

1. The input disc(s)

Powered by the engine

2. The variator roller(s)

Transfer power and match Disc speeds...

3. The output disc(s)

Transmit power to the drive shaft

4. Ratio Change

Rollers "steer" like a castor to reflect the ratio change.

Replacing a 5-speed automatic with an IVT

- Measured 19% reduction in fuel use
- Corresponding reduction in CO₂ emission

IVT enables

- Accurate control of engines
- New engine technologies
- Optimised drivelines
- Novel hybrid strategies

Engine Operating Points –Theoretical

- IVT optimal control line
- 5 AT operating envelope

Engine Operating Points – Measured 22 Millbrook London Transport City Route 153

- IVT optimal control line
- 5 AT operating envelope

IVT in a Hybrid

KERS - Ancillary Drive Application

 Not yet proven they can fulfil the aspirations of their protagonists in the long term

- The Internal Combustion Engine will fight back - burning hydrogen and bio-fuels
- Are Fuel Cells another example of:
 " The Emperor's New Clothes " ?