FUNCTIONAL APPROACH ON VEHICLE INTEGRATED SAFETY ASSESSMENT

Václav Jirovský

Czech Technical University in Prague, Czech Republic

Motivation

- evaluate false positives
- create method with fail/pass criteria definition
- provide system independent assessment method for any upcoming integrated safety system
- create system evaluation method in compliance with Vienna Convention on Road Traffic
- joint project
 - Czech Technical University in Prague
 - TÜV SÜD Czech

Definitions

M obstacle

- any object on road
 - car, motorcycle, pedestrian...
- any object in the vehicle trajectory
 - bicycle, tree, building...
- wirtual obstacle
 - road dead-end, road shoulder...

integrated safety systems

- systems simultaneously active cooperative systems
- pre-crash systems

damage

material damage and/or injury

Accident

PASSIVE SAFETY

damage reduction

deformation zones passenger restraint systems emergency call

...

Correction

Accident

ACTIVE SAFETY

PASSIVE SAFETY

critical situation correction

ABS (Anti-lock Brake System)
ESC (Electronic Stability
Control)
TCS (Traction Control System)

...

damage reduction

deformation zones passenger restraint systems emergency call

...

Detection and prevention

Correction

Accident

ACTIVE SAFETY

PASSIVE SAFETY

critical situation detection

vehicle-to-X comm.
Radar, LiDAR...
Picture analysis
driver vigilance detection
dynamic parameters
road traffic information
GPS

critical situation prevention

driver warning enivronment warning brake system activation (BAS, EBD)

critical situation correction

ESC (Electronic Stability
Control)
TCS (Traction Control System)
...

ABS (Anti-lock Brake System)

damage reduction

deformation zones passenger restraint systems emergency call

Detection and prevention

Correction

Prep.

Accident

ACTIVE SAFETY

INTEGRATED SAFETY

PASSIVE SAFETY

critical situation detection

vehicle-to-X comm.
Radar, LiDAR...
Picture analysis
driver vigilance detection
dynamic parameters
road traffic information
GPS

critical situation prevention

driver warning enivronment warning brake system activation (BAS,

critical situation correction

ABS (Anti-lock Brake System)
ESC (Electronic Stability
Control)

TCS (Traction LS

damage reduction

deformation zones passenger restraint systems emergency call

passenger restraint systems vehicle comfort systems

INTEGRATED (COOPERATIVE) SAFETY

AEBS (Automatic Emergency Braking System)
ESC (Electronic Stability Control)
LKA (Lane Keep Assist)

...

System testing

- system approach
 - functional safety laboratory testing
 - single system testing
 - electronic stability control testing
 - lane keep assistant systems testing etc.
 - correct behavior testing
 - scenarios with system activity expected
- functional approach
 - system cooperation testing
 - false positives testing
 - scenarios when system should stay inactive
 - system functional separation

Safety system intervention process

^{*} situation severity is determined by situation evaluation accuracy

System separation

detection subsystem

- focused on obstacle detection reliability
- can be tested by common functional safety testing methods
- no need for full car testing

reaction subsystem

- based on message from detection subsystem information
- provides dynamic corrections to vehicle movement
- action based on existence of information not on its relevance

vehicle reaction provides the only relevant result

System functional separation benefits

- simplification assumptions
 - detection system behavior corresponds to manufacturer specification
 - obstacle character detection
 - weather conditions
 - Mariver warning messages
 - detection subsystem has passed functional safety tests
 - reaction system always gets relevant data
- vehicle reaction corresponds to all available inputs
 - independent of system sensor types
 - independent of system technology
 - inadequate dynamic reaction indicates system failure

Vehicle reaction analysis

- cooperative safety is effective during near-crash situations
 - ** should provide collision avoidance
 - should minimize accident damage
- system **must** provide reaction to situation
 - in case of driver unavoidable accident
 - in case of driver inattention
- system **must not** provide reaction to situation
 - non-critical situation during common driving conditions
 - near-hazardous situations
 - when the driver does not want to

system intervention during non-critical situation is more dangerous than no intervention during critical situation

Testing conditions

- dynamic testing of cooperative system reaction
 - partial system testing cannot provide real life data
- obstacle type
 - car or car-like target
 - wirtual target (i.e. V2X)
- test repetitions
 - minimize the error of experimental data
- weather conditions
 - all tests during "optimal weather" conditions
 - one selected test with low adhesion

General test types

- M non-destructive
 - based on reaction space methodology
 - possible existence more solutions to avoid collision
 - mear dynamic instability tests
- test categories
 - Manual non-critical situations
 - mear-hazardous situations
 - low-μ test
- werification tests
 - system robustness testing
- destructive
 - enhanced crash test with cooperative systems active
 - comparative testing method

General test types

- M non-destructive
 - based on reaction space methodology
 - possible existence more solutions to avoid collision
 - mear dynamic instability tests
- M test categories
 - mon-critical situations
 - mear-hazardous situations
 - Now-μ test
- verification tests
 - system robustness testing
- destructive
 - enhanced crash test with cooperative systems active
 - comparative testing method

General test types

- M non-destructive
 - based on reaction space methodology
 - possible existence more solutions to avoid collision
 - mear dynamic instability tests
- test categories
 - Manual non-critical situations
 - mear-hazardous situations
 - Now-μ test
- werification tests
 - system robustness testing
- destructive
 - enhanced crash test with cooperative systems active
 - comparative testing method

Non-destructive test examples

non-critical situation test type

- fluently adjust new distance
- do nothing

passed

- initiate emergency braking
- activate alarm

failed

- proposed test conditions
 - corresponding to common city traffic
 - convoy speed: 50 km/h
 - inter-vehicle distance: ca.10 m

Non-destructive test examples (2)

mear-hazardous situation test type

velocity

- proposed test conditions
 - corresponding to common rural area traffic
 - convoy speed: 70 km/h
 - inter-vehicle distance: ca. 15 m

Non-destructive test examples (2)

mear-hazardous situation test type

- avoid collision
- do nothing

passed

- vehicle accelerates
- vehicle decelerates faster than required

failed

- proposed test conditions
 - corresponding to common rural area traffic
 - convoy speed: 70 km/h
 - inter-vehicle distance: ca. 15 m

Non-destructive test examples (3)

low-μ situation test type

- proposed test conditions
 - corresponding to common rural area traffic
 - vehicle speed difference: 20 km/h
 - initial inter-vehicle distance: 80 m

Non-destructive test examples (3)

low-μ situation test type

- adapt to low-µ conditions
- avoid collision
- do nothing

passed

- late reaction
- late warning

failed

- proposed test conditions
 - corresponding to common rural area traffic
 - vehicle speed difference: 20 km/h
 - initial inter-vehicle distance: 80 m

Destructive test example

- motivation: passive safety systems can safe lives up to ca. 64 km/h, integrated safety should help at higher speeds
- comparative test
- frontal offset crash-test according to EuroNCAP
 - integrated systems turned off
 - starting speed 64 km/h
 - crash speed 64 km/h
 - integrated systems turned on
 - starting speed according to automatic emergency braking system specification
 - system set to "avoid by braking only" state
 - crash speed 64 km/h

Destructive test example

- motivation: passive safety systems can safe lives up to ca. 64 km/h, integrated safety should help at higher speeds
- comparative test
- frontal offset crash-test according to EuroNCAP
 - integrated systems turned off
 - starting speed 64 km/h
 - crash speed 64 km/h
 - integrated systems turned on
 - starting speed according to automatic emergency braking system specification
 - system set to "avoid by braking only" state
 - crash speed 64 km/h

Conclusion

- system functional separation provides less expensive testing with better results than system type separation
- functional approach allows to easily test false positives
- new approach does not require full car "infinite" test loops
- functional approach allows to define fail/pass criteria

Is investing into integrated safety systems more effective than periodical driver training?

Václav Jirovský

Czech Technical University in Prague

contact

e-mail: vaclav.jirovsky@fs.cvut.cz

mobile: +420 603 755 524