

Passive Safety of Standing Passengers in Public Transportation

M.C. Chevalier, J.P. Verriest, G. Hanen, M. Hétier, P. Beillas, T. Robert Biomechanics and Impact Mechanics Laboratory (LBMC), UMR_T9406 16/11/2011

The Biomechanics and Impact Mechanics Laboratory (LBMC, UMR_T 9406)

Context and Objectives

- Problematics: Standing passengers in public transportation are vulnerable: in the case of a sudden deceleration
 - They may be subjected to movements of great amplitude
 - Possible injuries due to impacts on interior fittings
- ... A worsening problem:

 - An aging population
 - Road traffic more and more complex,
 - share the traffic with road vehicles,
 - especially at crossroads

Context and Objectives

Objectives [SafeInteriors project]

- Determine trends of standing occupants kinematics under emergency braking conditions
- Evaluate injury risk when head impacts a grab pole during a crash

Recommendations to designers concerning interior layout and acceleration/braking features of public transports

Standing occupants kinematics

Context and Objectives

Emergency braking: need to perform testing with live human subjects

Importance of the reactivity in the kinematics

Standing occupants kinematics: methods

Volunteers are standing on a mobile platform initially still

The platform is suddenly moved towards the subject without notice

Platform acceleration pulse measured for 6 tests and the theoretical corridor defined for urban and peri-urban trams

Mobile platform

Launching cart

Standing occupants kinematics: *methods*

- 10 young healthy males •
 - Individual protection (harness, mattress, net)
- 6 configurations mixing orientation of body and use of a buttock support and grabpole •

Sideward, leaning sideward against a backrest

facing

forward facing

holding a grabpole

forward facing

- Surface markers on head, hip, ankles ٠
- Video recording @250 fps ٠
- Tracking of markers provides their trajectories and velocities
- Questionnaires filled by the subjects (to evaluate their filling of desequilibrium...

Standing occupants kinematics: results

• Example

Standing occupants kinematics: results

• Example of head tangential velocities vs horizontal displacement

Rearward facing configuration

Forward facing configuration

	min	max
Head velocity (m/s)	0.45	3.6
Excursion (m)	0.3	2.38

Standing occupants kinematics: results

- Kinematics trends:
 - Subjects forced to perform steps to preserve their balance
 - Different strategies
 - some subjects prepare themselves before the pulse and make steps to resist the forced motion.
 - others try to keep their torso upright without resisting and finish their course in the foam mattress
 - crossing the legs / making "chassé" lateral steps (sideward facing)
 - Influence of the direction
 - Rearward facing configuration is the most critical
 - all the subjects finish their course in the mattress
 - Sideward facing situation is also critical for some subjects
 - Forward facing situation is easier to control for subjects
 - Duration of the pulse seems to have a great effect on balance recovery
 - Use of a buttock rest increases the stability (even in the sideward direction)
 - Use of a grab pole provides a good restraint effect and limits the excursion of the body

Toward the simulation of the balance recovery INRIA kinematics

- Principle
 - A human body representation is placed in a close loop with a controller
 - At each time-step, the best control actions that will zero the CoM velocity is decided and applied.

Mis en place et soutenu p

Toward the simulation of the balance recovery INRIA kinematics

- Principle
- Control actions
 - Moving the center of pressure
 - Rotating the upper body
 - Making a step

Mis en place et soutenu p

Toward the simulation of the balance recovery INRIA kinematics

Mis en place et soutenu p

- Principle
- Control actions
- Example of results

Evaluation of Head Injury Risk

Evaluation of Head Injury Risk

What is the risk of head injury when impacting a grabpole during a crash or an emergency braking?

- Statistics identify the head as the most exposed part of the body
- Grab poles are the most common furniture in standing areas

Head impact initial conditions

REFERENCE SCENARIO

« What is the most common way to impact a grabpole? »
– Passenger standing 25 to 50cm from a pole

- Lack of reaction prior to impact with a grabpole

Evaluation of Head Injury Risk: results

GENERAL TREND

- Linear relation between HICd and impact velocity
- Values of HICd → moderate injury risk : 20% chance to sustain an AIS2+ injury

AIS = Abbreviated Injury Scale

Evaluation of Head Injury Risk: results

• Strong effect of the impact height

Tall passengers are more at risk: 20% chance to sustain an AIS3+ injury

Conclusion & Perspectives

- Standing passengers submitted to an emergency braking
 - Analysis of volunteers kinematics shows that subjects achieve different performance levels
 - Rearward facing configuration is demonstrated to be the most critical situation
 - Use of grabpole or buttock rest allows to reduce the excursion on the platform
 - Head velocity may reach up to 3.6 m/s
 - could be higher for elderly passengers due to large modification of reaction time, joint mobility and muscular power
 - May induce moderate injuries when head impacts a grab pole

Conclusion & Perspectives

- Standing passengers submitted to a crash deceleration
 - Lack of reaction (duration of the pulse is too short)
 - Case of head impact against a grab pole
 - Injury evaluation with a simple and repeatable methodology
 - Moderate injury risk
 - However some populations are more at risk
 - » Tall passengers: risks are much higher when impact takes place where the grabpole is the most rigid (close to its fixings)
 - » Elderly passengers
 - Need to still reduce injury risk to allow the full evacuation of the vehicle after a crash.
 - Limitations
 - no fully adapted criteria: HICd takes into account only linear accelerations
 - only one kind of population
 - Another scenarios could be investigated
 - Impacts against a rigid structure of the vehicle, falls , ...

Thank you Any questions?

This work has been developed in the framework of the European funded project SAFEINTERIORS (2006-2010), contract nº FP6-031260, with the partners UNewcastle, Alstom, ATOC, BT, CIDAUT, DB, INRETS, IST, MIRA, RSSB, Siemens, SNCF, UNIFE and VUKV.

Contacts: marie-christine.chevalier@ifsttar.fr, thomas.robert@ifsttar.fr

