Off-Road Equipment Legislation and Technology Overview Knibb, Gormezano and Partners

Alex Woodrow Engine Expo May 2011

> Anibb Gormezano & Partners nternational Management & Technology Consultants

Contents

- Scope
- Drivers & Markets
- Legislation
 - Noxious Emissions
 - Fuel Economy/CO₂
- Technology

Sources

- All data based on KGP and Off-Highway Research data and estimates
- Based on production database
- Copyright 2011 Knibb, Gormezano and Partners

Equipment Scope¹

- Agricultural Tractors
- Articulated Dump Trucks
- Asphalt Finishers
- Backhoe Loaders
- Crawler Dozers
- Crawler Excavators
- Mini Excavators
- Motor Graders

- Motor Scrapers
- Rigid Dump Trucks
- RTLTs Masted
- RTLTs Telescopic
- Skid-Steer Loaders
- Wheeled Excavators
- Wheeled Loaders
- Combine Harvesters

¹ Mobile cranes, diesel forklift and compaction equipment to be added to Multi-Client

Global Markets

- Global Markets are rebounding after severe recession in 2009/2008
- China and India lead the way
- In value terms (Construction only) China also way ahead, but with a lower per unit price
- Ag Tractors volume accounts for over highway of NRMM market with India market leader by some way. China growth puts it into 2nd place, but still behind India
- China growth leading to global restructuring of production

Key Drivers – Off-Road

Driver	Details	Impact	Key Technologies
Noxious Emissions	Tier 4 Interim, Final, Stage IIIB, IV, MLIT Step 4	2011-2015	Base Engine, Air Management, Aftertreatment, FIE, Optimisation
CO ₂ /Fuel Economy	US EPA Tier 5, Stage V?	2018-2020	Optimisation, Hybridisation, Waste Heat Recovery, Transmission, Hydraulics
OBD	OBD, PEMS	2015-2020	Additional Sensors, Feedback Control
Safety	EU legislation, ECE Regulations	2012-2015	Stability, Electro-Hydraulics
Comfort	Operator Driven	Ongoing	HVAC, Transmission Automation, Electro- Hydraulics
Globalisation	Market Driven	Ongoing	Production Consolidation. Modularity
Cost of Ownership	Operator Driven	Ongoing	Various
Productivity	Operator Driven	Ongoing	Various, Electro-Hydraulic Controls
Manufacturing	OEM Drive	Ongoing	Hardware Modularisation, Modularisation of Software allowing customisation

Knibb Gormezano & Partners International Management & Technology Consultants

Source: KGP Technology Forecast Q1 2011

Majority of off-road legislation is still not fully adopted, and timing includes some derpgations and flexibility schemes including Averaging Banking and Trading in the US. *European flexibility scheme may be widened to 35% of sales

Emissions Legislation Timing

		2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
USA	8-19kw	Tier 1		Tier 2			Tier 4 Interim											
	19-37		Tie	er 2			T	ier 4 Interi	m	Tie			Tier 4	r 4 Final				
	37-56		Tie	er 2			Tier 3	B/Tier 4 Int	erim*		Tier 4 Final							
	56-75		Tie	er 2		Tier 3												
	75-130		Tier 2			Tier 3				Ti	Tier 4 Interim			Tier 4 Final				
	130-560	Tie	er 2			Tier 3	Tier 3 Tier 4 Interim					Tier 4 Final						
	560+	Tie	er 1			Tier 2				Tier 4 Interim		nterim Tier 4 Final			Tier 4 Final			
Europe	19-37		Stage II			Stage IIIA												
	37-56		Sta	ge II		Stage IIIA				Stage IIIB								
	56-75		Sta	ge II			Stage IIIA											
	75-130	Sta	ge II			Stage	Stage IIIA			Stag	e IIIB	Stage IV*						
	130-560	Sta	ge II			Stage IIIA	Stage IIIA St		Stage IIIB	ge IIIB			Stage IV					
China	19-37					State II State II!												
	37+		Sta	te I		State II				State III?		State IV?						
India	19-37			Trem II-III	/CEV II/III						Trem IIIA/CEV IIIA							
	37+	Trem II-III/CEV II/III				Trem IIIA/CEV IIIA Trem IV/CEV IV?												

*Timing may vary for new models and all models Flexibility schemes have major impact US 37-56 has 2 options, EU 56-130 from 9/2014

Post 2015 CO₂/Fuel Economy likely to be addressed

EPA Emissions Limits

EPA Tier 4 Emission Standards for Non-Road Mobile Machines (g/kWh)

Category	Standard	Date	NMHC + NO _x	NMHC	NOx	PM
W < 8	Tier 4 (Interim)	01/01/2010	7.50			0.60
8 ≤ kW < 19	Tier 4 (Interim)	01/01/2008	7.50			0.40
10 (111) 27	Tier 4 (Interim)	01/01/2008	7.50			0.30
19 2 KW < 37	Tier 4 (Final)	01/01/2013	4.70			0.03
37 ≤ kW < 56:	Tier 4 (Interim)	01/01/2008	4.70			0.30
Option 1	Tier 4 (Final)	01/01/2013	4.70			0.03
37 ≤ kW < 56: Option 2	Tier 4 (Final)	01/01/2012	4.70			0.03
56 ≤ kW < 130	Tier 4 (Interim)	01/01/2012		0.19	3.40	0.02
	Tier 4 (Final)	01/01/2015		0.19	0.40	0.02
130 ≤ kW < 560	Tier 4 (Interim)	01/01/2011		0.19	2.00	0.02
	Tier 4 (Final)	01/01/2014		0.19	0.40	0.02
560 ≤ kW < 900 (Generator Sets)	Tier 4 (Interim)	01/01/2011		0.40	3.50	0.10
	Tier 4 (Final)	01/01/2015		0.19	0.67	0.03
kW ≥ 900 (Generator Sets)	Tier 4 (Interim)	01/01/2011		0.40	0.67	0.10
	Tier 4 (Final)	01/01/2015		0.19	0.67	0.03
kW ≥ 560 (other equipment)	Tier 4 (Interim)	01/01/2011		0.40	3.50	0.10
	Tier 4 (Final)	01/01/2015		0.19	3.50	0.04

Emissions Compliance (Tier 4 130-560kw)

Off-Road Mobile Equipment Global Emissions Compliance 2011

- Equivalent of Interim Tier 4/Stage 3B driving after-treament
- Requires electronic control in most segments
- SCR or EGR+DPF for larger engines, EGR or EGR+DPF for smaller engines
- Limited advanced compliance overall due to China and Indian dominance of volumes
- Averaging Banking and Trading/Flexibility in US and Flexibility in Europe allows delayed introduction of Tier 4 Interim/Stage 3B equivalent

Knibb Gormezano & Partne

Off-Road Mobile Equipment - Global Engine Usage 2011

- Global Engine use is split by power band, small segment <56kw dominant in Asia-Pacific due to size of tractor market and volume of mini-excavators and small products exported
- 56-130kw is the largest segment outside these markets
- 130kw plus is limited to large tractors and equipment in all market
- Mechanical/Electronic, TC/Normally Aspirated switch in 19-36kW band for Tier 4 Final

Knibb Gormezano & Partn

Top Engine Manufacturers 2011

- Top 20 manufacturers account for 80% of total production in 2015, down from 85% in 2010.
- Small engine volume for this equipment dominated by Indian tractor manufacturers and Japanese small engine producers

Knibb Gormezano & Partne

Top Engine Manufacturers 2011

 Many large engines common with on-road platforms, similar technology

Knibb Gormezano & Partner

Technology Packages

kW	Tier 2/Stage 2	Tier 3/Stage 3A	Interim Tier 4/Stage 3B	Tier 4/Stage 4	
19-37	Mech IDI	Mech IDI	Mech IDI NA or TC	Electronic DI NA or TC	
37-56	Mech DI or Electronic DI NA or TC	Mech DI or Electronic DI NA or TC	Mech DI or Electronic DI NA or TC	Electronic DI NA or TC	
56-75	Mech DI or Electronic DI NA or TC	Mech DI or Electronic DI NA or TC	Electronic CR DI TC CEGR	Electronic CR DI TC CEGR+DPF/DOC	
75-130	DI TC	Electronic CR DI TC	Electronic CR DI/HP DI CEGR +DPF/DOC or SCR TC/VGT	Electronic CR DI/HP DI VGT or TC SCR+CEGR+DPF/DOC	
130-560	Electronic DI TC	Electronic CR DI/HP DI CEGR or SCR TC/VGT	Electronic CR DI/HP DI VGT or TC CEGR+DPF/DOC or SCR	Electronic CR DI/HP DI VGT or R2S SCR+CEGR+DPF/DOC	

NA – Normally Aspirated TC Turbocharged DI Direct Injection (Common Rail) CEGR – Cooled EGR DPF – Diesel Particulate Filter DOC – Diesel Oxidation Catalyst

VGT Variable Geometry Turbocharger SCR – Selective Catalytic Reduction Lower Emissions (down 90%)

Increased Cost (2x)

Knibb Gormezano & Partners International Management & Technology Consultants

Technology Developments – On Road*

System Content – Fuel Economy Technologies

Potential combination of technologies to meet future CO₂ legislation

Technology	On-Road	✓ Off-Road
Advanced emissions aftertreatment (Inc. SCR)	Low	Low
Downsizing and downspeeding	Medium	Medium
Electrical/hydraulic accessories	Low	Low
Engine turbo-compounding and other advanced turbo technologies	Medium	Medium
HCCI /PCCI	Low	Low
Hybridisation	Medium	High*
Hydraulic System optimisation	Low	High
Improved combustion (massive EGR and ~3000 bar injection pressures)	Low	Low
Lubricants	Low	Low
Reduced engine parasitic losses	Low	Low
Regenerative Braking /Energy Recovery	Low	Medium*
Transmission efficiency improvements	Low	Low
Variable valvetrains	Low	Low
Vehicle aerodynamic drag, tyre and driveline friction	High	Low
Waste heat recovery systems (electro-mechanical & electro-thermal)	Medium	Medium

*Depending on vehicle/equipment type, duty cycle NB Off-Road has different duty cycle and durability requirements than on-road

Contacts

- Alex Woodrow, Managing Director
- **T**: +44 (0) 1332 856301
- E: alexwoodrow@kgpauto.com
- W: www.kgpauto.com

