



- Students at Cranfield University School of Engineering
- Pursuing MSc in Automotive Product Engineering
- This presentation represents our ongoing thesis research in the area of Active Roll Control
- Expected accomplishment in September 2010

### Background

Cranfield



Source: First Mustang Club Of Germany

The Problem:

•Body roll is caused by lateral acceleration

•Too much roll causes passenger discomfort

•Also result in roll steer effects

•Adversely influences the driver's control responses

The Solution:

•Reduce the roll angle ( $\theta$ ) using Active Roll Control (ARC)











### Electric vs Hydraulic



|              | Hydraulic<br>ARC | Electric<br>ARC |
|--------------|------------------|-----------------|
| Response     | Slow             | Quick           |
| Cost         | Expensive        | Cheaper         |
| Design       | Complex          | Simple          |
| Maintenance  | Difficult        | Easier          |
| Adaptability | Difficult        | Easier          |

EARC also offers fuel consumption reduction of 1 - 2% compared to HARC\*

\*Source: ZF Sachs

# Aims and Objectives of Research



- 1. Simulation of single channel HARC
- 2. Simulation of single channel EARC
- 3. Compare single channel HARC vs EARC
- 4. Simulation of dual channel HARC
- 5. Simulation of dual channel EARC
- 6. Compare dual channel HARC vs EARC











## Co-simulation between Adams and Simulink



roll and

DER

effective distribution

roll map

ADAMS\_uout

ADAMS Plant

ADAMS\_yout

Y To Workspace

ADAMS tout

T To Workspace

Actual force

rear actuat

> all to the trop

ibution roll mome

roll controlle

HARC actuator force

2 IARC\_actuator\_force\_re

Mux

lanual Swit

•Adams/Car outputs variables and simulation data into MATLAB/Simulink environment via an M-file and MDLfile respectively

•MDL-file contains a function block for "drag-and-drop" into Simulink control system

•Simulation is initiated using Simulink, which then carries out the co-simulation in the background with Adams/Solver

•Adams/Car and Adams/PostProcessor used for viewing simulation results

www.cranfield.ac.uk

ARC actuator le

Demu

HARC\_steering\_

HARC\_body\_roll\_a





## Dual channel ARC: influence of the roll distribution

Multiple Runs Time= 0.0100 Frame=001

![](_page_18_Figure_2.jpeg)

www.cranfield.ac.uk

Cranfield

# Dual channel ARC: Safety Improvement

![](_page_19_Picture_1.jpeg)

Multiple Runs Time= 0.0100 Frame=001

![](_page_19_Picture_3.jpeg)

![](_page_20_Picture_0.jpeg)

#### Conclusion

- Active Roll Control offers potential to reduce body roll and increase stability
- Higher average vehicle speeds attainable via ARC
- Electric ARC systems offer easier implementation in full electric and hybrid vehicles
- Impact of Electric ARC systems to be investigated further
- Passive suspension can be tuned for increased comfort for vehicles with ARC systems

![](_page_21_Picture_0.jpeg)

#### Questions and Comments