Torque Vectoring for improved vehicle dynamics

Peter van Vliet
Bosch Engineering GmbH
Bosch Engineering GmbH

- 100% subsidiary of Robert Bosch GmbH
- established in 1999, approx. 1400 employees
- customized solutions based on Bosch products
Torque Vectoring – Actuators

<table>
<thead>
<tr>
<th>Differential</th>
<th>Brake</th>
<th>E-Motors</th>
</tr>
</thead>
<tbody>
<tr>
<td>active differential</td>
<td>brake</td>
<td>electric motor</td>
</tr>
</tbody>
</table>

yaw torque
Contents

unique benefits regarding vehicle dynamics

less compromises

driver

raise performance objectively
Torque vectoring – range of action

- TV electric motors
- TV differential
- TV brake
- TV brake
- ESC
- ESC

understeering

dynamic state of the vehicle

oversteering
Raise the limiting cornering speed

without torque vectoring - understeering setup -

- front axle reaches the limit first
- friction potential is **not** utilized completely

with torque vectoring - neutral -

- yaw torque reduces lateral slip at front axle
- increased usage of friction potential at rear axle

60
limiting speed

60
limit not reached
Raise the limiting cornering speed

without torque vectoring - understeering setup -

- Limiting speed: 60
- Front axle reaches the limit first
- Friction potential is not utilized completely

with torque vectoring - neutral -

- Limiting speed: 70
- Full usage of friction potential
- Improvement of traction!
Virtual reduction of the moment of inertia

without torque vectoring

with torque vectoring
Contents

unique benefits regarding vehicle dynamics

less compromises

driver

raise performance objectively
The compromises in chassis tuning

Torque vectoring alternatives

lower center of gravity

Benefit
- less load transfer improves traction and agility

Compromises
- chassis needs to be adapted
- stiffer springs affect comfort
- less ground clearance

torque vectoring

Benefits
- torque vectoring does not affect driving comfort
- chassis tuning can be focused more on aspects like comfort and stability, since agility and traction are already improved
The compromises in chassis tuning

Torque vectoring alternatives

increased camber angle at front wheels

Benefit
- more grip at front axle: increased agility

Compromises
- loss of driving stability at high speeds
- no vehicle dynamics control
- tire wear

torque vectoring

Benefits
- agility improvements are situation dependent (sensor information)
- agility at low speeds, simultaneously stability at high speeds
- adaptive control on dry or wet asphalt and low-μ
Contents

unique benefits regarding vehicle dynamics

less compromises

driver

raise performance objectively
<table>
<thead>
<tr>
<th>Coupé (Bosch Engineering)</th>
<th>Sports car (OEM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>torque vectoring actuator: 4 e-motors</td>
<td>torque vectoring actuator: brake</td>
</tr>
<tr>
<td>total power:</td>
<td>combustion engine power: > 350 kW</td>
</tr>
<tr>
<td>4 x 60 kW</td>
<td>maximum speed: > 250 km/h</td>
</tr>
<tr>
<td>maximum wheel torque: 700 Nm</td>
<td>weight: ca. 1550 kg</td>
</tr>
<tr>
<td>acceleration 0-100 km/h: ca. 7 s</td>
<td>driven wheels: rear axle</td>
</tr>
<tr>
<td>maximum speed: 130 km/h</td>
<td></td>
</tr>
<tr>
<td>weight: 1970 kg</td>
<td></td>
</tr>
<tr>
<td>battery capacity: 45 KWh</td>
<td></td>
</tr>
</tbody>
</table>

Experimental results – TV e-motors and TV-brake

Bosch Engineering GmbH

BEG-CD | 6/22/2010 | © Bosch Engineering GmbH 2010. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.
Speed difference
several attempts to find out
maximum drive-through speed

TV e-motors: 70 km/h
no TV: 66 km/h
Experimental results – brake - skid pad testing

radius = 50m

speed
slowly increasing until the vehicle leaves the circular path

Steering wheel angle (°)

TV - brake
no TV

lateral acceleration (m/s²)

1 m/s²
Experimental results – brake – race track driving

lap distance: 2.2km
number of laps: 2
lap times reproducibility: < 0.2s
Experimental results – brake – race track driving

- TV brake
- no TV

- Speed level is raised by TV
- Driver brakes earlier due to higher speed
- Earlier on-throttle at corner exit
Experimental results – brake – race track driving

Measured improvement of lap times

Lap time reduction lap 1: 1.1 seconds
Lap time reduction lap 2: 0.95 seconds
Lap distance: 2.2 km

Lap time improvement by torque vectoring strongly depends on:
► Chassis setup of vehicle (this case: understeering)
► Engine capacity: possibility to maintain the speed offset after corner exit (this case: > 350kW)
► Capability of the driver to push the vehicle to the limit (this case: world class driver)

Remember that Nordschleife is 21km...
Conclusion

Torque vectoring

--- An efficient method to improve vehicle dynamics ---

- Improvements in agility, safety, traction
- Chassis tuning without compromising on stability or comfort
- Benefits can be measured objectively
- Proven maturity of brake actuation concept
- Extended opportunities in multi-motor electric vehicles

Thank you for your attention
peter.vanvliet@de.bosch.com