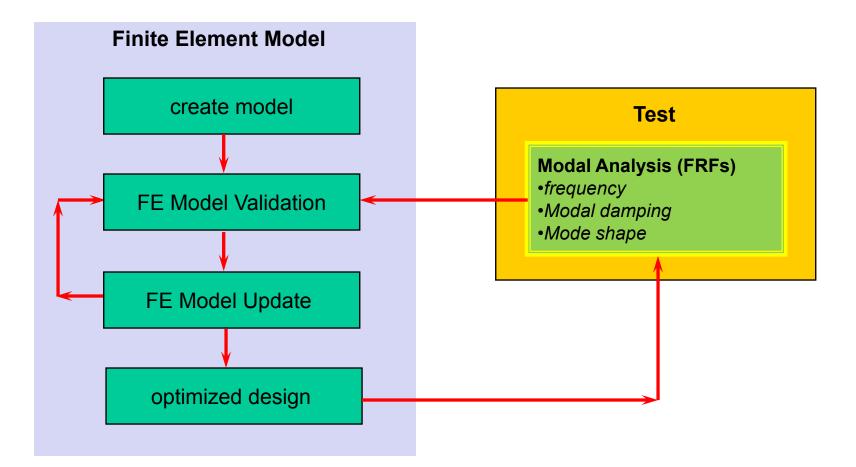


Potential for Automation in Modal Testing

by utilizing pre-test simulation and robotized non-contact vibration sensors Joerg Sauer

Advancing Measurements by Light • www.polytec.com


How to Achieve Increased Efficiency?

- Automate recurring tasks
 - Use production means to capacity
- Optimize Time-To-Market
 - parallelize
 - reduce iterations

Use closed data workflows

Process in Modal Testing

Advancing Measurements by Light • www.polytec.com © Polytec GmbH 01.06.2010 # 3

Requirements for Tests

- Unknown parameters for simulation
 - material properties
 - damping
 - stiffness in joints and bonds
 - tolerances model prototype
- Iimited accuracy of FE model
 - complexity and calculation time
- Time effort for model modification

\rightarrow Test are required for a proper model

Workflow Modal Test

Accelerometers	Automated (RoboVib)	
 identification of measurement locations (manually) setup n x: Attach accel.'s & dummy masses n x: Route cabling n x: Route cabling n x: Check for cross wiring and sensor integrity n x: Correct local coordinate system: Euler angles n x: Check phasing 1 x: Set up measurement system 1x perform measurement move, retest and remove n x: sensors and cables n x: dummy masses results: FE model update 	 load geometry from FE define meas. locations simulate robot positions setup 1 x: Define object coordinate system perform measurement results: FE model update 	
	LAB TIME sequential OFFICE TIME parallel	

How to Achieve Increased Efficiency?

- Automate recurring tasks
 - Use production means to capacity
- Optimize Time-To-Market
 - parallelize
 - reduce iterations

Use closed data workflows

Automation

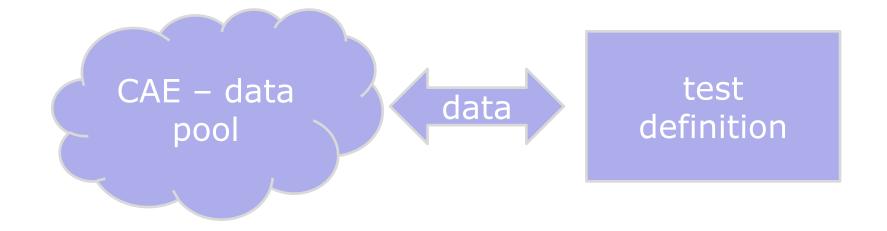
Virtualization of the Test Set-Up

 identification of measurement locations (manually)

setup

- n x: Attach accel.'s & dummy masses
- n x: Route cabling
- n x: Check for cross wiring and sensor integrity
- n x: Correct local coordinate system: Euler angles
- n x: Check phasing

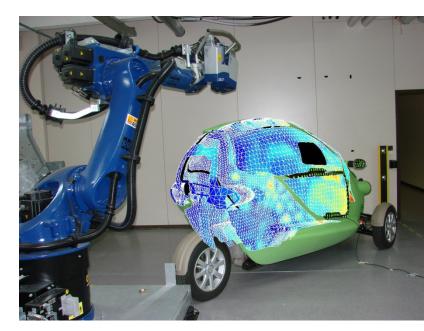
- Use FE model
 - derive measurement grid
- Virtualize sensor mounting/cabling
 - optical vibration mapping
 - robotic repositioning

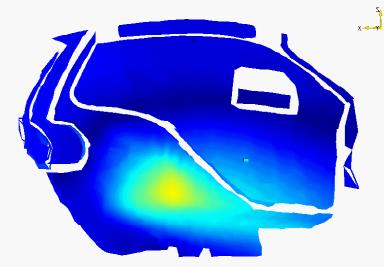


Why measuring non-contact?

- "Automate recurring tasks"
 - define location
 - mounting sensors
 - measure orientation

- use FE data grid
- virtual definition
- 3D alignment

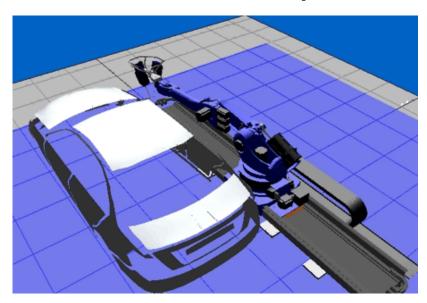

Example

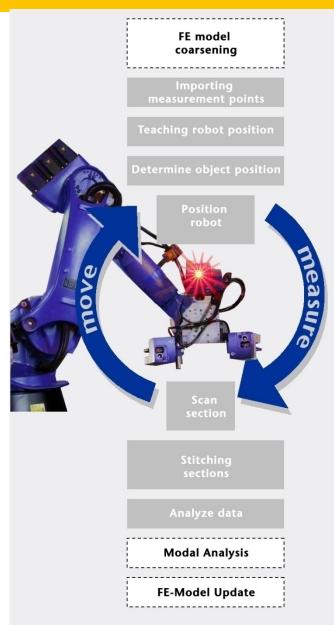


Body: Electric Car

SAM

- Cree AG, Switzerland
- Modal test
 - 4300 points; 12900 DOF
 - Excitation: shaker
 - Duration:
 - set-up 2h
 - measurement time 3h

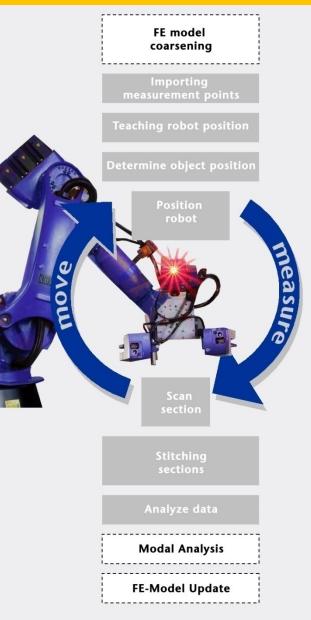



CAE Workflow

C Polytec

New Workflow - 1

robot program:
 created off-line from model
 measurement locations and orientations are predefined



CAE Workflow

New Workflow - 2

- robot supported scanning
 RoboVib
- data linked to the FE nodes in the predefined coordinate system
- closed CAE data workflow

Measure Efficiently

Optical Measurement

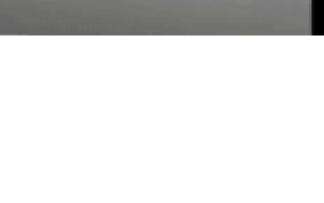
- enables automation
 - virtual point definition
 - non-contact, unaltered condition
- high data quality and density

 better model update also at higher modes

knuckle: results from measurement; 4416 DOF

FE nodes are used for point definition w/o interpolation

Advancing Measurements by Light • www.polytec.com © Polytec GmbH 01.06.2010 # 12



🗢 Poivtec

Vibrometry

Solution: Scanning Vibrometry

- non-contact
- point oriented and full field
- works with virtual points
- accepts robot mounting
- accepts FE geometries
- allows to work with object coordinate systems
- general properties
 - high resolution (frequency and amplitude
 - robust

#13

How to Achieve Increased Efficiency?

- Automate recurring tasks
 - Use production means to capacity
- Optimize Time-To-Market
 - parallelize
 - reduce iterations

Use closed data workflows

Why measuring non-contact?

- Use production means to capacity
 - instrumentation field
 - manual instrumentation
 - prototype for preparation
 - closing time

- ➡ offline preparation
- Offline preparation
- prototype only for actual measurement
- measurement
 continues automatic

Automation

An Efficient Combination

- Industrial robots
 - established
 - safe
 - fast
 - off-the-shelf

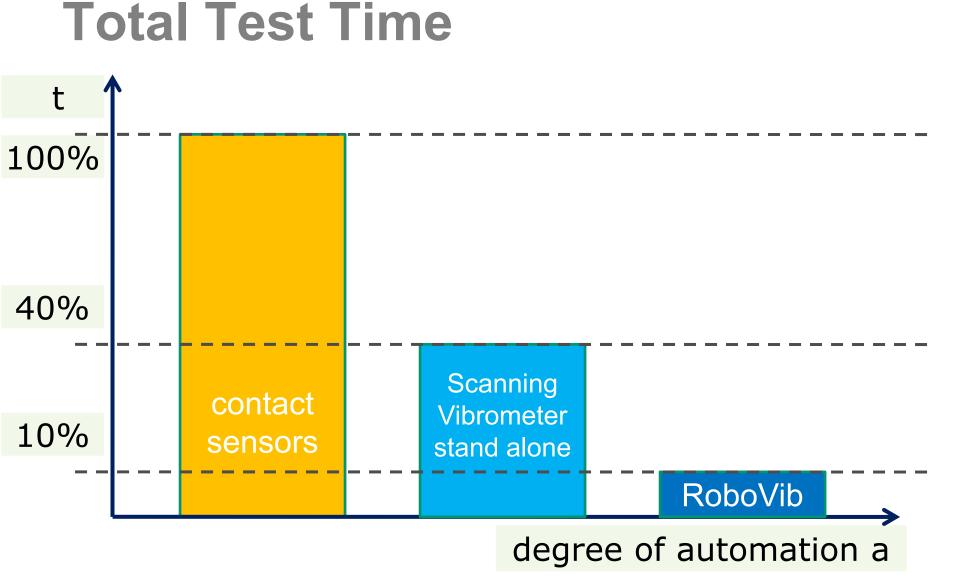
- Scanning Laser Doppler Vibrometry
 - no physical contact to the object under test
 - allows simple robot programs
 - "enveloping" trajectory sufficient
 - robot programs reused for other model series

How to Achieve Increased Efficiency?

- Automate recurring tasks
 - Use production means to capacity
- Optimize Time-To-Market
 - parallelize
 - reduce iterations

Use closed data workflows

Why measuring non-contact?

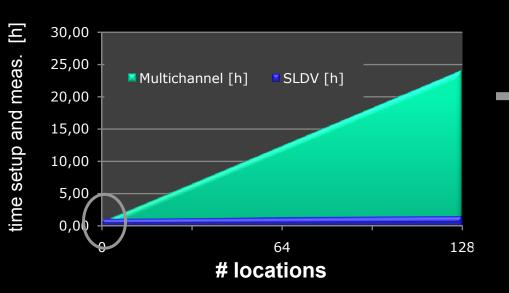

Optimize Time-To-Market

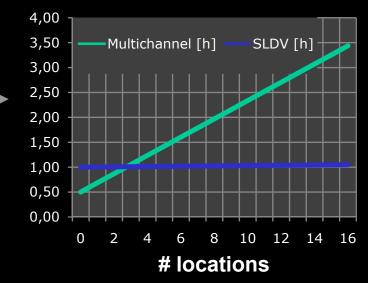
parallelize

test preparation

- no need for a physical prototype
- "instrumentation" of the prototype
 - parallel to development using FE data
- reduce iterations
 - Iimited data density
 - high data density for model update at reduced costs and in less time

Measure Efficiently


Advancing Measurements by Light • www.polytec.com © Polytec GmbH 01.06.2010 # 19


Total Test Time

total time

total time (zoom-in)

[µ]

Properties:

Meas. time:	20 s
System setup	30 min
time per sensor	5 min
dummy mass applic.	1 min
	System setup time per sensor

Advancing Measurements by Light • www.polytec.com

Conclusion and Outlook

- Non-contact methods open the door to full automation
- Automation allows a better use of resources
- Virtualization of the test preparation allows parallel processes
 - Robotics and Laser Vibrometry as a efficient combination