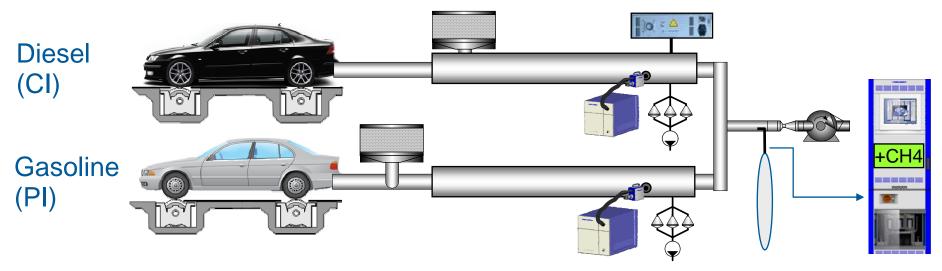
PARTICLE NUMBER MEASUREMENT – FROM ECE-R83 TO ECE-R49

م م ا ا ا ا ا ا ا ا ا

Herwig JÖRGL


AGENDA

- Overview Light Duty Emission Regulations
- Overview Heavy Duty Emission Regulations
- Recommended System Setup
- The AVL Particle Counter
- Applications and Measurement Results

a o e o

LIGHT DUTY Continuously adding new test requirements

Emission	Euro 1	Euro 2	Euro 3	Euro 4	Euro 5	Euro 5+	Euro 6
EIIIISSIOII	1992	1996	2000	2005	2009	2011	2014
CO, THC, NOx, CO2	✓						
Diluted Hot THC - CI only ("Diesel")	✓						
Particulate Mass – CI only ("Diesel")	✓						
NMHC					\checkmark		
Particulate Mass – PI-GDI only					✓		
Particle Number – CI only ("Diesel")						✓	
CO2 Limit						✓	
Particle Number – all PI ("Gasoline")							(✓)

LIGHT DUTY Euro 4 to 6 – Limits PM/PN

			2009 201		11	2014 (proposal)	
			Euro 5	Euro 5 +		Euro 6	
			mg/km	mg/km	#/km	mg/km	#/km
	Particulate mass	GDI	5	4,5		4,5	
		Diesel	5	4,5		4,5	
	Particle number	Gasoline			no		TBD
		Diesel			6*10 ¹¹		6*10 ¹¹
			_				

- Decrease of PM limit from Euro 5 to Euro 6
- Introduction of new PN limit within 2011
- PN limit for gasoline vehicles to be defined

HEAVY DUTY EU-VI Approach

Particle Number-Limit (PN)

- Likely implementation of new particle number limit with EU-VI
- Specifications based on the Particle Measurement Program (PMP)
- Limits established on "Best available technology" or "Correlation with PM limit (10mg/kWh)"
- Proposal: 8*10¹¹#/kWh for the stationary and 6*10¹¹ #/kWh for the transient cycle
- Implementation of these limits expected in 2010 (maybe not before 2011).

PMP Heavy Duty Evaluation

- Evaluation Program still in progress
- Measurements showed good correlation, except low concentration levels (background).
- Background level might be included in the upcoming regulation
- "Draft Heavy Duty Validation Exercise Report" in progress

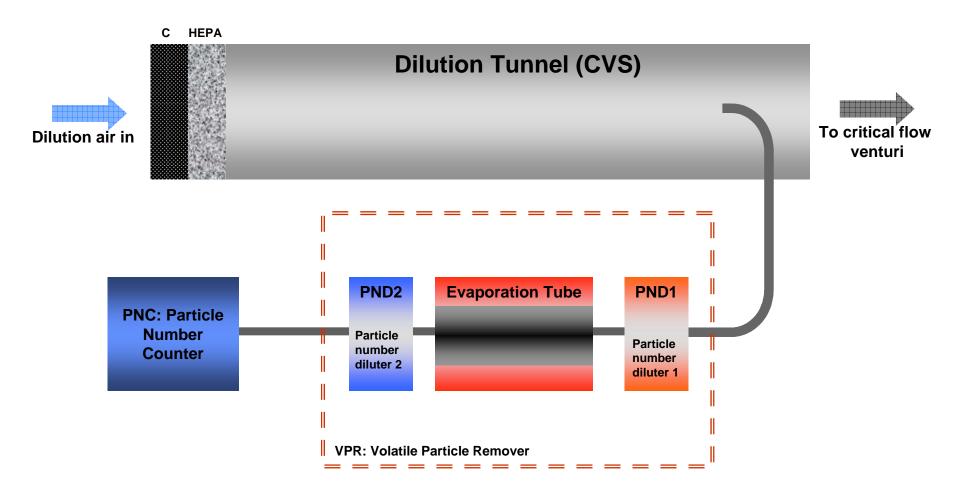
HEAVY DUTY European & US Approach

- Implementation of particle numbers (PN) in ECE-R49 Draft for the enhancement of the R-49 in progress Current highlights:
 - Compensation of the extracted sample flow in partial flow dilution applications
 - Time Alignment (Proposal: "system transformation time" t50)
 - Cold start weighting factor of 14% instead of 10% (depending on WHDC)?
 - Regeneration?
- Implementation of particle numbers (PN) in LEV III (Californian emission legislation)

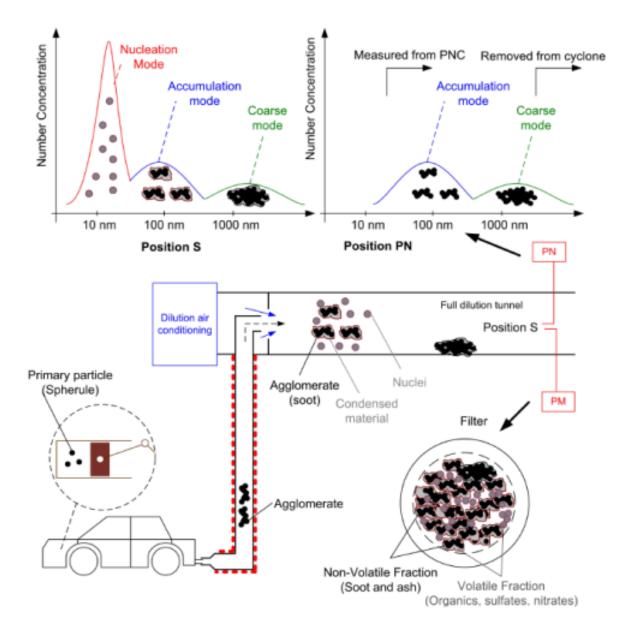
Proposal for the future amendments:

- Mandatory standard not being considered at this time, but
- an optional PM number standard of about 1012 particles/mi is being considered (which could be chosen by manufacturers instead of the PM mass standard).

HEAVY DUTY Limits

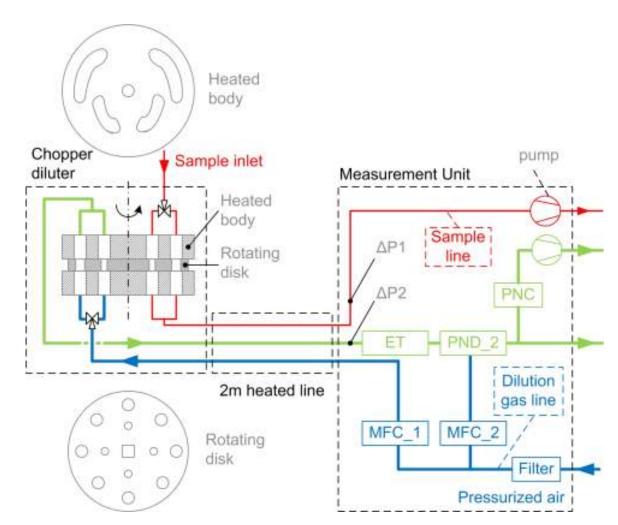

Test / Emission		EU-I	EU-II	EU-III	EU-IV	EU-V	EU-VI		
		1992	1996	2000	2005	2008	2013		
ESC	СО	g/kW-h	4,50	4,00	2,10	1,50	1,50	1,50	
	THC	g/kW-h	1,10	1,10	0,66	0,46	0,46	0,13	
	NMHC	g/kW-h							
	CH4	g/kW-h							
	NOx	g/kW-h	8,00	7,00	5,00	3,50	2,00	0,40	
(WHSC)	PM	g/kW-h	3,60	0,15	0,10	0,02	0,02	0,01	
Test cycle	NH3	ppm				25	25	10	
	PN	#/kWh						"8*10 ¹¹ "	
	CO2, FC	g/kW-h						?	
	unregulated	g/kW-h						?	WHTC:
	CO	g/kW-h			5,40	4,00	4,00	4,00	0,40
	THC	g/kW-h						0,16	or
	NMHC	g/kW-h			0,78	0,55	0,55		0,46
ETC (WHTC) Test cycle	CH4	g/kW-h			1,60	1,10	1,10		
	NOx	g/kW-h			5,00	3,50	2,00	0,40	
	PM	g/kW-h			0,16	0,03	0,03	0,01	
	NH3	ppm				25	25	10	
	PN	#/kWh						"6*10 ¹¹ "	
	CO2, FC	g/kW-h						?	
	unregulated	g/kW-h						?	

Moderate Reduction (<30%) ■ Large Reduction (>30%)

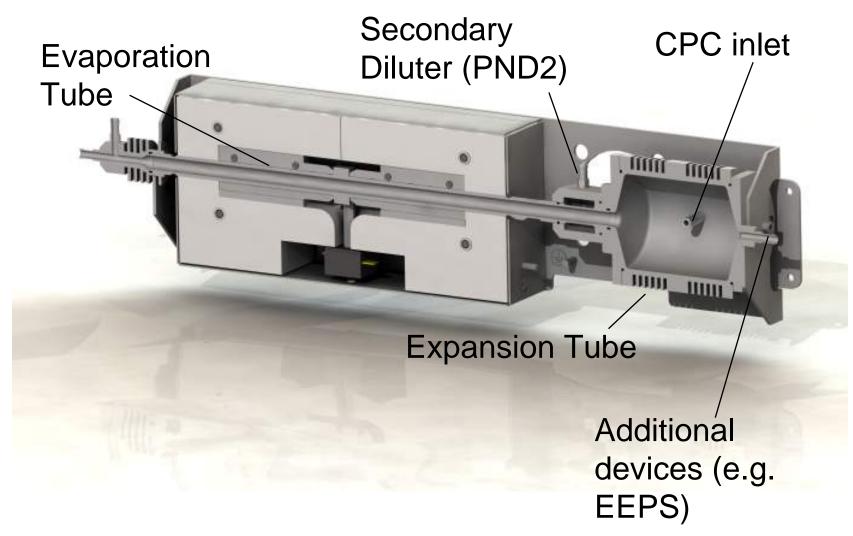

SUPPLEMENT 07 OF AMENDMENTS TO REGULATION No.83

PARTICLE GENERATION IN GENERAL

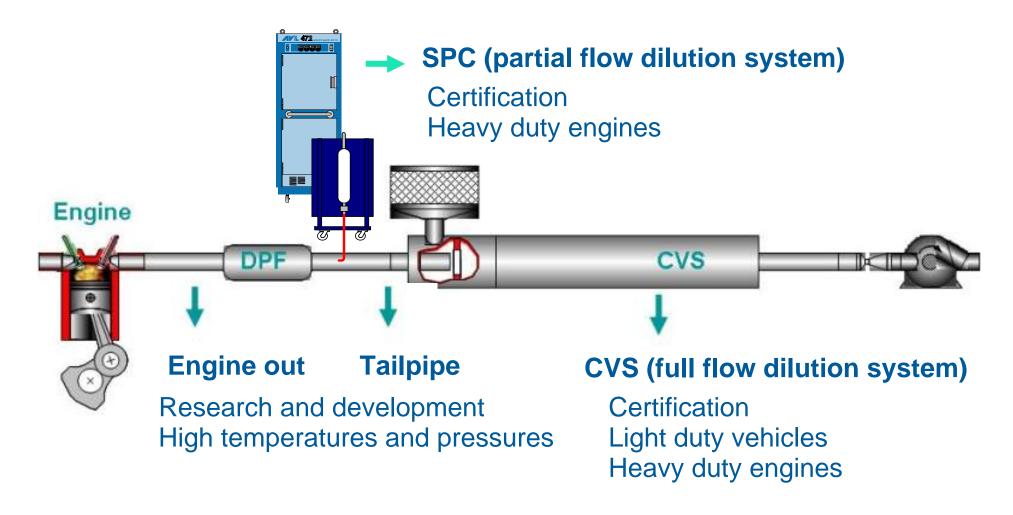
THE AVL PARTICLE COUNTER: APC 489



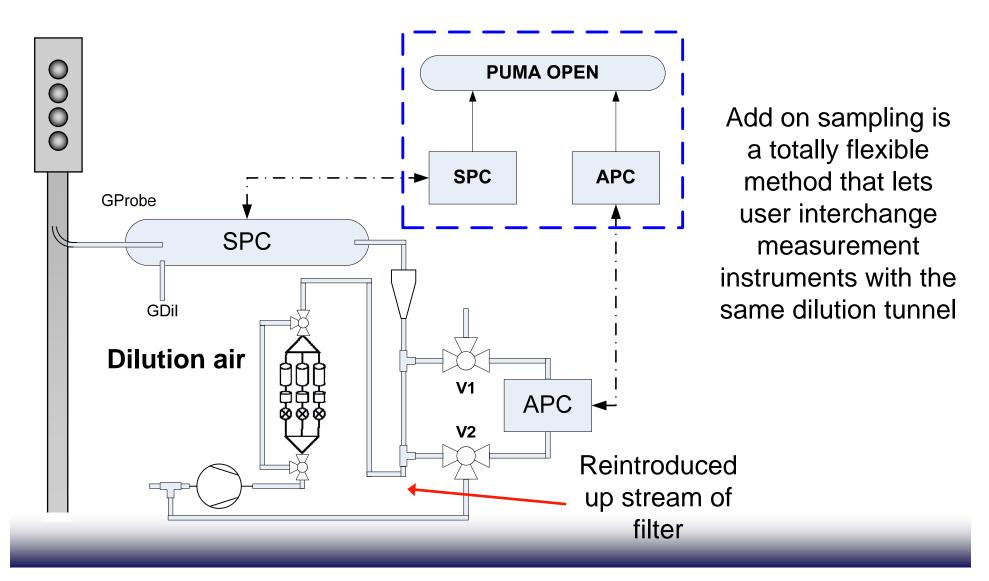
APC 489 – SYSTEM STRUCTURE


AVL solution provides:

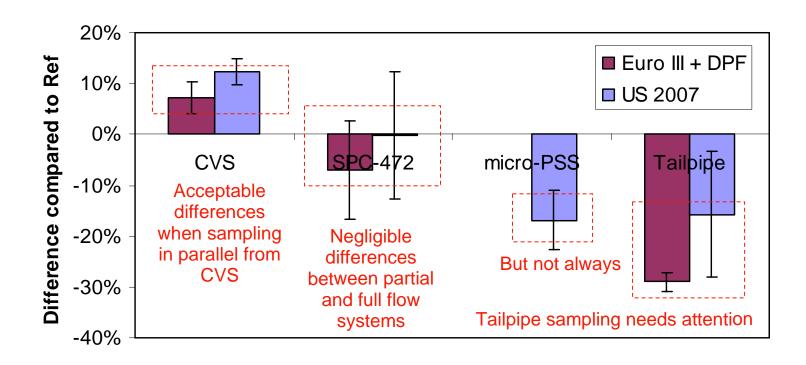
- highest linearity independent from particle size
- very low maintenance
- Switch between high and low dilution without changing the rotating disk



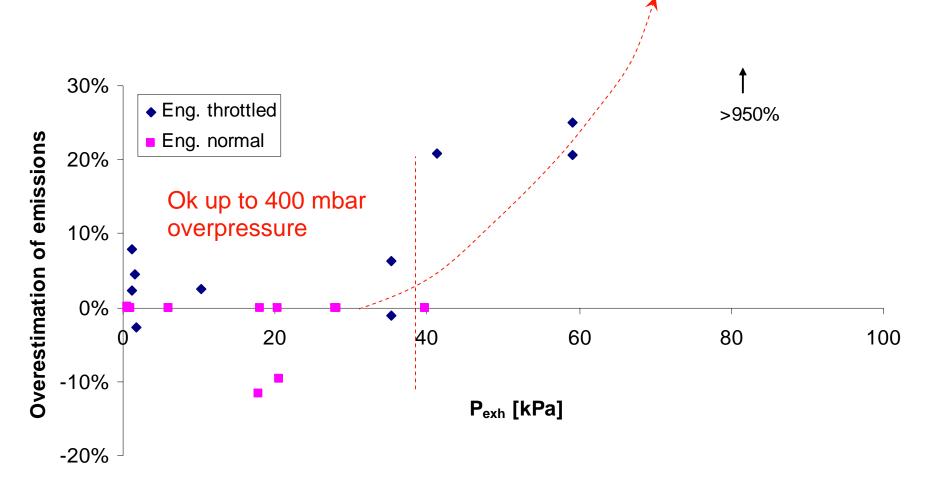
EVAPORATION TUBE AND SECONDARY DILUTION



ONE SYSTEM FOR DIFFERENT APPLICATIONS

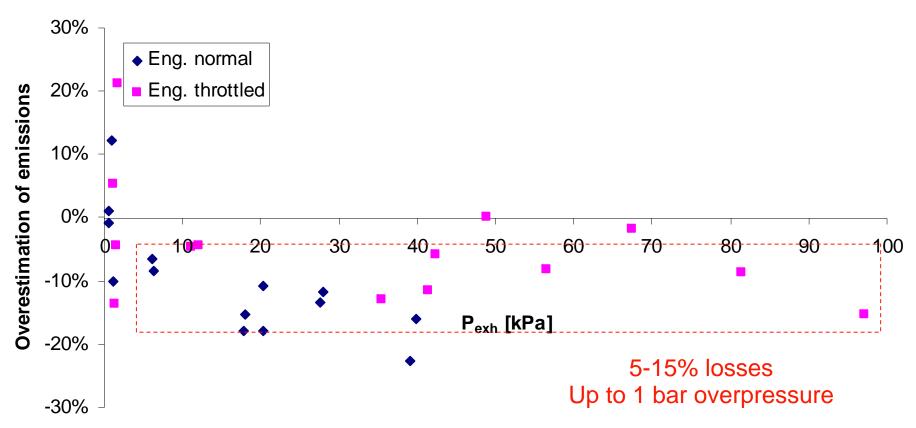


ADD ON SAMPLING - OPERATION PRINCIPLE


DIFFERENT SAMPLING POSITIONS

APC relative differences to the "reference" system (always connected to the CVS) when used at different sampling positions. Error bars show one stdev of >3 repetitions for each case. The reference system was an in house built dual Dekati ejector system.

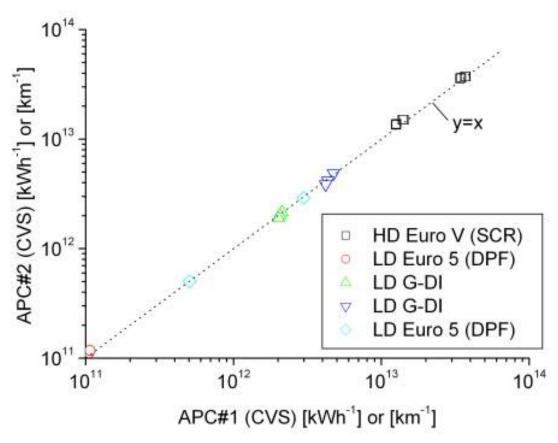
PRESSURE EFFECT ON APC MEASUREMENT



APC was connected directly to the raw exhaust with the tailpipe sampling kit (TK) (no pressure reducing unit (PRU)

Overestimation of the APC emissions as a function of the exhaust gas pressure

PRESSURE REDUCING UNIT



APC was connected to the raw exhaust through the pressure reducing unit (PRU) and the tailpipe sampling unit (TK) for temperature stabilization Losses with the pressure reducing unit.

COMPARABILITY OF APCs

- Two well calibrated systems of the same manufacturer (AVL) on average <4% difference</p>
- 95% of devices within±10%

Comparison of two PN systems (APCs from AVL) both connected to the CVS for one heavy duty engine (different test cycles) and two different APCs for four different light duty vehicles (for the NEDC cycle).

HD=Heavy Duty, LD=Light Duty, SCR=Selective Catalytic Reduction for NOx, DPF=Diesel Particulate Filter, G-DI=Gasoline Direct Injection.

PARTICLE NUMBER MEASUREMENT – FROM ECE-R83 TO ECE-R49

THANK YOU FOR YOUR ATTENTION

