

What are the challenges if working consistently with sensor data – from a single test cell to a large test field

Michael Mühlögger, AVL List GmbH Burkhard Schranz, optiMEAS GmbH Christof Salcher, Hottinger Baldwin Messtechnik GmbH Rahman Jamal, National Instruments Germany GmbH

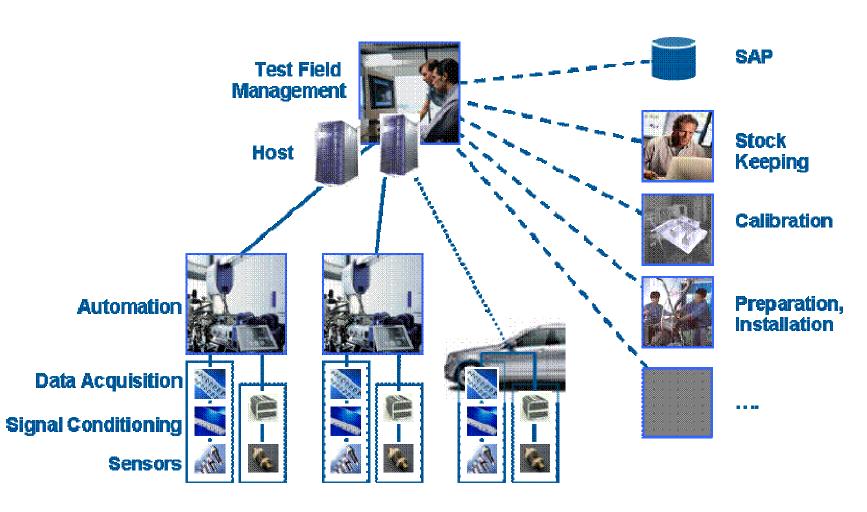
June 23, 2010

Challenges for test bed users in their daily measurement tasks

Measurement tasks have to be fulfilled nowadays:

- in a more complex measurement environment (e.g. more subsystems involved)
- in a more automated way
- in the same or even shorter time
- with less skilled personnel

At the same time it has to be ensured:


- highest measurement quality
- handling of calibration and maintenance requirements
- documented, reproducible measurement set-ups

Overview: The system layers

OPtiMEAS

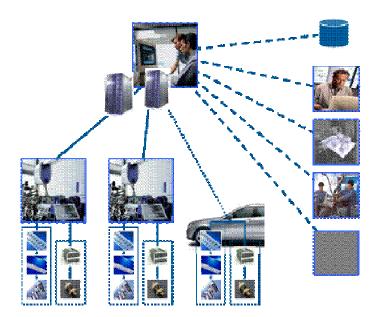
Main general customer requirements

- Consistent use of sensor information throughout the complete measurement chain
- Exchangeability of solutions (sensors, systems, etc.)
 from different vendors (open and non-proprietary solutions) –
 at least minimize required efforts for interoperability of different products
- Traceability of measurement data (which sensor, which calibration curve, which measurement point/location, which signal was used for the particular measurement, geometric location of installed sensors)
- Cost effectiveness of the new technology (it should save more money then it costs...)

How important are sensors?

- Tracking of Measurement results back to the sensor data
- Managed information about sensor history
- Support of operational data management
- Autarchic operation of Test Bed
- Concepts for in vehicle use
- Pre selection of sensors (Instance or Type Based)
- Plausibility checks
- Support of build in calibration
- Valid concept for TEDS as well as for non TEDS Sensors
- . .

How intelligent use of sensor data may help: Some examples



Sensor Identification

- During test order process the sensor type is defined, instance is defined via TEDS identification
- Plausibility check: planned sensor vs. connected sensor

Stock Keeping

- Initial creation of sensor information in central storage
- Update of calibration information in central storage

In Vehicle stand alone system

Sensor as transport medium for I/O setup

Why an Initiative of Test Solution Providers was started

Target market:

automotive testing environment

Purpose:

 discuss and describe common problems and requirements in respect of management of sensor data

Goal:

agree on common solution possibilities (i.e. standardization activities)

What is ISDM, who stands behind it?

- Considering the previously mentioned requirements the necessity of a standardization work group was evident
- All major suppliers of the Automotive Testing market are participating in the ISDM work group

Scenarios identified by ISDM for a complete testing process

- 1. Ordering / Registration of a Sensor
- 2. Stock Keeping
- 3. Test Order
- 4. Installation and Preparation
- 5. Measurement / Test
- 6. Failure Recognition
- 7. History Log
- 8. Maintenance
- 9. Calibration
- 10. Removing from Stock

What solutions exist today

- the IEEE1451 (TEDS) standard seems to be the most adequate to base on
 - IEEE1451 is fully focused on the basis information of the sensor

So it began: TEDS

- Transducer Electronic Data Sheet: part of IEEE P1451
- An <u>innovative combination of technologies</u> to simplify and reduce sensor configuration errors
- 1993: Joint effort of IEEE, NIST, and Industry
- An <u>open standard</u>, independent of transducer or data system manufacturer
 - Web Home: http://ieee1451.nist.gov/
- Sensors <u>already available!</u>

Smart Transducer Interface Standards: IEEE 1451

"Common Communication Interface... accepting various transducer bus standards"

- Transducer Digitizer Convention ONLY
- Connect Analog sensors to existing digital networks
- No limits on manufacturers (transducer or net) maximize use of existing networks

 NOT a definition for a new networkable, wireless, or "digital" sensor

1121 Level 11451

What the IEEE standard does not cover

- the sensor life cycle
- the sensor embedding into its administration process to gain additional value/benefit
 - purchasing, storing, end of life time
 - commissioning and installation
 - operation process (e.g. test order planning, measurement execution, ...)
 - service processes (e.g. maintenance)
 - sensor history

... and if compared to IEEE 1451

Extended TEDS usage to the sensor life cycle

- Ordering
- Stock Keeping
- Test Order
- Installation & Preparation
- Measurement / Test
- Failure Recognition
- History Log
- Maintenance
- Calibration
- Removing from Stock

IEEE1451.4 Scope

Simple Sensor Process Chain

Current TEDS just supplies information about the sensor – not about the process

Additional Needs

- More flexibility in using application specific information
- Interoperability and traceability
- Extending the TEDS content without creating new templates
- No need of modifying the IEEE 1451.4 standard

Summary and Next Steps

FEV

- For a typical test field infrastructure a concept based on a central equipment management system will be considered
- The test order and rigging process is supported by additional SW modules
- Basic and extended TEDS add value for several use cases and also for ensuring the quality of the setup
- In vehicle concepts can be based on both pure TEDS decentralized configuration as well as on a centralized data base driven concept

Benefits of ISDM approach

Reduction of Time

- Consideration of all possible scenarios -> accelerates and closes the process chain
- Reduction of test repetitions
- Automated parameterization

Quality increase

- Approach of all suppliers: interchangeability, traceability, cost effectiveness
- No risk of mixing up sensors