

VT System Smart HIL Testing

© 2010. Vector Informatik GmbH. All rights reserved. Any distribution or copying is subject to prior written approval by Vector.



V1.0 2010-06-04

#### > ECU Testing

Testing a Door Control Unit

Summary and Outlook



# ECU Testing I/O Access for ECU Testing





# ECU Testing I/O Access for ECU Testing





#### ECU Testing VT System Concept

- Highly integrated modules to cover the complete testing requirements of an input or output channel
  EtherCAT
  - Stimulation
  - Measurement
  - Fault injection
- Minimal cabling, no additional hardware
  - Focus on test case development
- Modular and scalable
  - From developer's desk to dedicated HIL systems
- Electric characteristics suited to automotive requirements
- Connection to CANoe via EtherCAT<sup>®</sup>
  - Fulfills real-time requirements
  - Connection via standard Ethernet interface









© 2010. Vector Informatik GmbH. All rights reserved. Any distribution or copying is subject to prior written approval by Vector.

### Agenda

ECU Testing

#### > Testing a Door Control Unit

Summary and Outlook



© 2010. Vector Informatik GmbH. All rights reserved. Any distribution or copying is subject to prior written approval by Vector.

#### Motivation

- Door control unit operates
  - Mirrors
  - Window lifts
  - Locking system
- Test requirements
  - Test of different use cases
  - Handling of failures
  - Monitoring of energy consumption
  - ► Test of diagnostic interface





#### Remaining bus simulation

- ECU needs communication with other ECUs
  - Central Locking System
  - Control of mirror and windows at other door
- CANoe provides means to simulate missing ECUs
  - Manual programming
  - MATLAB®/Simulink® integration
  - Generation from Communication Database







#### Sensors

- Sensors provide information about environment and signal user requests
  - Doors closed?
  - Position of window
  - Control switches and buttons
  - **>** ...
- Test requires generation of specified sensor signals
- VT System generates sensor input
  - Constant voltage, PWM, Wave form
  - Decade resistor
  - Faults like short circuits or open circuits
  - Directly controlled from CANoe







#### Actuators

- Actuators are operated by ECU according to sensor input and internal state
  - Window lift motor
  - Mirror servo
  - Lock
- ECU detects missing actuators
- Test checks output for specified combinations of input signals







#### Actuators

- VT System simulates actuators with electronic load
  - Original components not needed for test
  - Efficient simulation of different situations
- VT System measures ECU output
  - Plain voltage measurement
  - Averages and RMS computed on module
  - PWM frequency and duty cycle
  - Available for automatic tests in CANoe
  - Visualization in CANoe, e.g. as graph







#### Power Supply

- Low energy consumption is an important requirement, especially for vehicles with electric drive
- ECU must be able to compensate certain fluctuations of supply voltage
- Handling of failures
- VT System measures supply voltage and current
  - Handles high currents up to 70A for one supply line
  - Low currents can be measured with µA resolution to check sleep states
- Simulation of different scenarios
  - Control of external power supply via analog signal or RS232 port







## Testing a Door Control Unit ECU Access and Test Control

- Test of diagnostic functions
- CANoe provides diagnostic framework
  - Support for CANdela and ODX databases
  - VT System can be used in automated diagnostic tests with DiVa e.g. for fault injection
- White Box testing with direct access to internal values of the ECU
  - CANoe provides CCP and XCP interface
- Test control with CANoe Test Feature Set
  - Test sequences can be created using XML, CAPL or .NET
- Automatic generation of test reports







ECU Testing

Testing a Door Control Unit

> Summary and Outlook



© 2010. Vector Informatik GmbH. All rights reserved. Any distribution or copying is subject to prior written approval by Vector.

### Summary and Outlook

#### Benefits

- Integrated all-in-one hardware interface for ECU I/O testing
  - All basic test components included (relays, decade resistor, ...)
  - ▶ Fills gap between standard I/O card and ECU under test
- Fulfills automotive test requirements concerning voltage, currents, latency, through-put, ...
- Simplifies wiring of even complex test stands
- Fully integrated in CANoe: direct and simple control of I/O for test, simulation, and analysis
- Scalable test solution: from compact off-the-shelf I/O box at developer's desk to component HIL racks in the lab



### Summary and Outlook

#### Upcoming Extensions

- Dedicated PC Module for real-time part of CANoe
  - Atom or Core 2 Duo CPU on highly flexible COM Express module
  - Improvement of real-time capabilities
- Network Interface Module VT6104
  - 4 channel CAN, LIN
  - Based on well-established CANcard XLe technology
  - Contains relays for short circuit, open wire, termination
- Extension Module VT7900
  - Base board for the realization of application-specific VT System modules
  - Digital and analog I/Os allow simple application boards







Thank you for your attention.

For detailed information about Vector and our products please have a look at: www.vector.com

Author:

Vector Informatik GmbH Ingersheimer Str. 24 70499 Stuttgart

