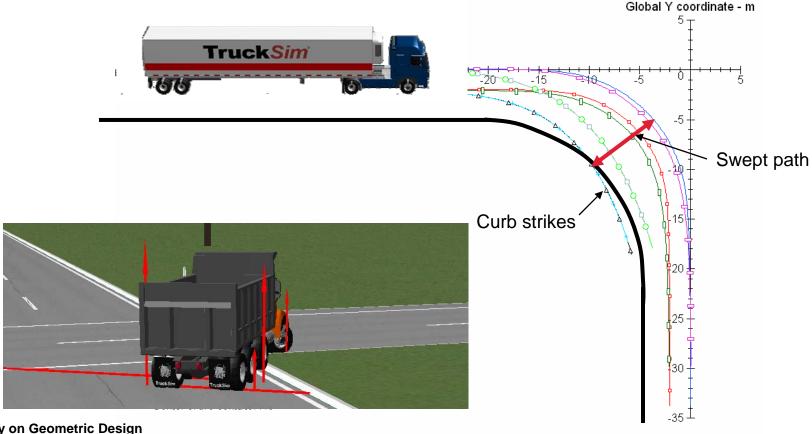


New Applications for Vehicle Dynamic Simulation

Thomas D. Gillespie, Ph.D.

Director of Product Planning Mechanical Simulation Corporation, Ann Arbor, Michigan

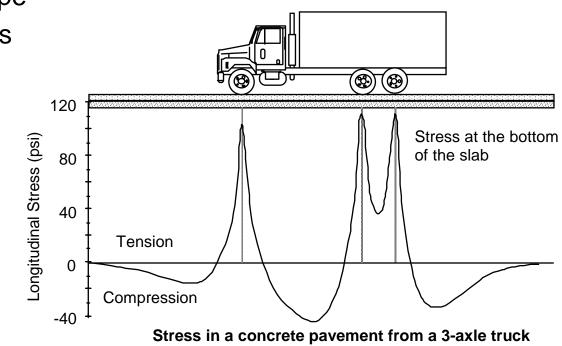
Background


- Vehicle dynamics simulation tools are generally designed:
 - By automotive engineers
 - <u>For</u> automotive engineers
- Vehicle simulation has utility to other communities
 - Highway designers (geometry and pavement structures)
 - Regulators responsible for Road Use Laws and safety standards
 - Military equipment developers
 - Researchers
 - Accident reconstructionists
- Over the past years CarSim and TruckSim have been employed in many of these "outside the box" applications

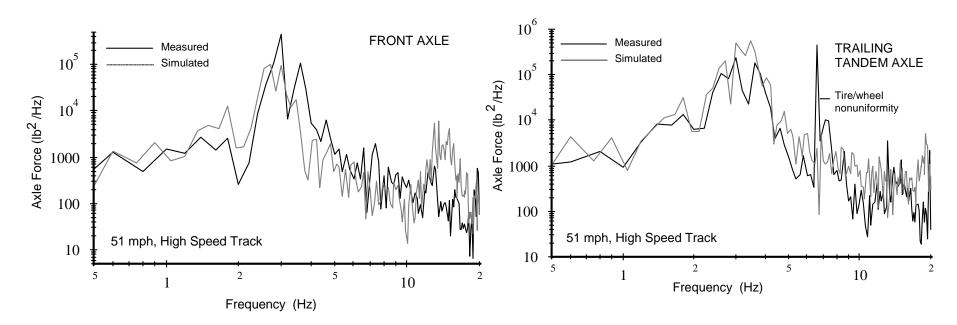
Application Areas

- Trucking
 - Road compatibility (off-tracking, dynamic loads)
 - Performance Based Standards
 - Rollover
- Military vehicles
 - Tank model (Helmut Schmidt)
 - Stryker performance
 - Crusher development
- Research in Vehicle Control Systems
- Accident Reconstruction

Highway Design: Geometry


- Truck dimensions must be regulated for compatibility with road geometry
- Intersection right turn is typical example of a critical maneuver in U.S.
- Truck Sim provides an easy method for test

Ref: "A Policy on Geometric Design of Highways and Streets," AASHTO


Highway Design: Pavement Structures

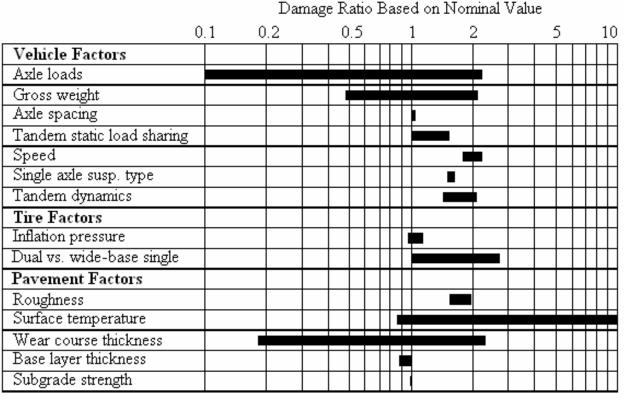
- Stresses from truck wheels damage pavement, limiting life
- Which truck characteristics cause the most damage?
 - Number of axles
 - Axle loads
 - Suspensions type
 - Road roughness
 - Tires
 - Etc.

Highway Design: Dynamic Loads

- Solution: Simulate trucks causing road damage
- Truck Sim models were validated for predicting wheel loads on roads with measured roughness profiles

Power spectral densities of axle force at 51 mph on the PACCAR test track.

00


Highway Design: Truck Configurations

- 29 truck configurations
- Each truck tested in simulation to evaluate damage

Truck Num.	Truck Configuration	Configuration Name	GCVW	Axle Loads	* Wheelbases		
1-2		2 Axle Straight Truck	(kips) 32	(kips) 12/20	(feet) 15		
1-2	1 6	2 Axie Straight 1 fuck	52	12/20			
3-4	ą – "	3 Axle Straight Truck	46	12/34	18		
5-8	ą.	3 Axle Refuse Hauler	64	20/44	17.5		
9-12	. .	4 Axle Concrete Mixer	68	18/38/12	20/12		
13	ū,	3 Axle Tractor-Semitrailer	52	12/20/20	10/36		
14-15	<u> </u>	4 Axle Tractor-Semitrailer	66	12/20/34	12/36		
16-20	<u></u>	5 Axle Tractor-Semitrailer	80	12/34/34	12/36		
21	<u></u>	5 Axle Tractor-Semitrailer	80	14/33/33	10/36		
22		5 Axle Tanker	80	12/34/34	12/36		
23-24	0.000	6 Axle Tanker	85	12/34/39	12/38		
25	₽₽₽₽₽₽	5 Axle Doubles	80	10/18/17/18/17	10/22/22		
26	<u>r</u>	5 Axle Doubles	80	10/20/15/20/15	10/22/22		
27	<u> </u>	7 Axle Doubles	120	12/34/34/20/20	12/38/22		
28	0.000.000	9 Axle Doubles	140	12/32/32/32/32	12/38/38		
29	0.00000	Turner Doubles	114	10/26/26/26/26	12/22/22		

Highway Design: Example Results

- Influence of each truck characteristic was quantified
- Result: guidance for highway designers and regulators

Factors influencing flexible pavement fatigue damage.

Regulators

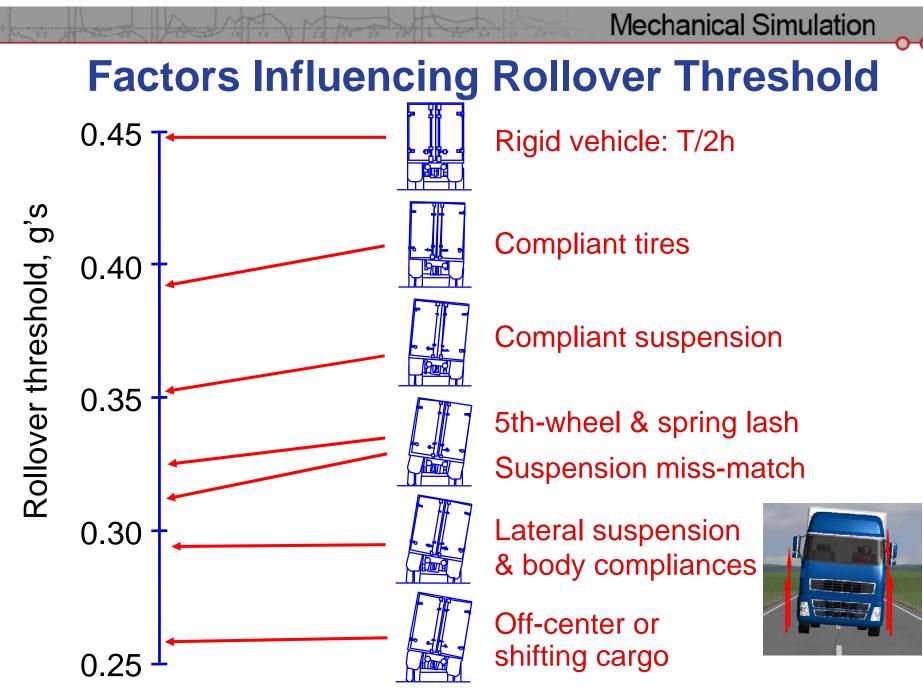
- How do you specify and regulate truck properties?
 - Current truck regulations (Road Use Laws) are prescriptive
 - Sizes, weights and configurations
- New Approach
 - Focus on outcomes
 - Performance Based Standards (PBS)
 - National Transport Commission (Australia)
- Outcome objectives
 - Improve road safety
 - Protect road infrastructure
 - Promote innovation

00

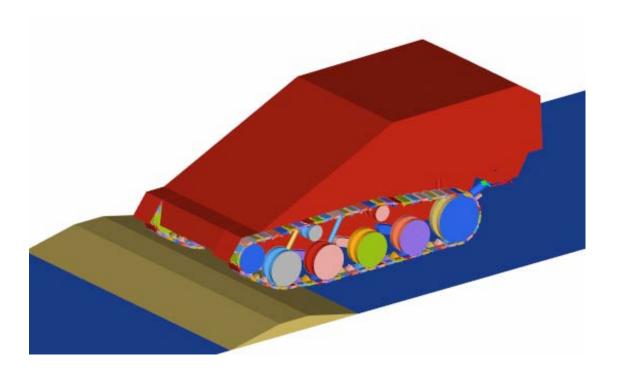
Performance Based Standards (PBS)

- Virtually all tests can be performed with TruckSim
- Proposed new truck designs can be evaluated before build and test

🛢 Truck	Sim Run Control; {	Performa	nce Based Standards } Ac	celeration	X
<u>E</u> ile <u>E</u> dit	<u>D</u> atasets Libraries <u>T</u> ools <u>V</u> ie	w <u>H</u> elp			
	Preceding Dataset	Ctrl+Up	🔄 🔊 🛐 Run329.par	国 向 7 (n.
Back Forv	<u>N</u> ext Dataset	Ctrl+Down	Undo Parsfile	Sidebar Refresh Help Lu	ock
	* Animator Sound and Skid N	Marks 🕨 🕨	un Control: Built-In Solvers	Results (Post Processing)	
	* Extended Models	•	Run Math Model 🗸	Animate	
	* Jounce Bumpers	•		Front Right 3/4 View w/o Yaw (Rr. Facing)	-
	* Suspended Cab	+			-
Do	* Tire Tester	•		Plot Multiple Plots	
	Accident Reconstruction	+	top run at specified time or station 🛛 🔻	Lvs. S – lat. pos. (Road) vs. station	•
Enviro	Aero Effects	•	Time (sec) Road station (m)		-
Rc	Batch Matrix TS7	•	-3.6 -70		
Tir	Brakes	•	15 200	Ay – lateral accel. of CG's	•
	Double Lane Change Event-Driven Tests	•	Output variables: Write Channels 🛛 💌	Roll – sprung masses	-
	Frame Torsional Flexibility		✓ Acceleration	Fy – lateral wheel forces (L side)	-
	LabVIEW		Frontal & Tail Swing	Fy – lateral wheel forces (R side)	-
□ Over	Mechanics Course		Gradeability		-
	Performance Based Standards		High-speed Transient Off-tracking		
		•	Low-speed Swept Path	{No dataset selected}	
	Quick Start Guide Example				
	Ride and Handling	•	Rearward Amplification	Overlay Other Runs	
	Roads and Highway	•	Stability during Braking		
	Rollover	•	Startability		
	Sensors and Outputs	•	Static Rollover Threshold		
	Simulink	+	Ride Quality		
	Steering	•	Steer Tire Friction Demand		
	VD Expo 08	•	Tracking on Straight Path		
Ме		Understeer Gradient	View Echo file with initial conditions	-	
			Yaw Damping		


Ref: "Rules for Assessment of Potential PBS Vehicles," National Transport Commission (Australia)

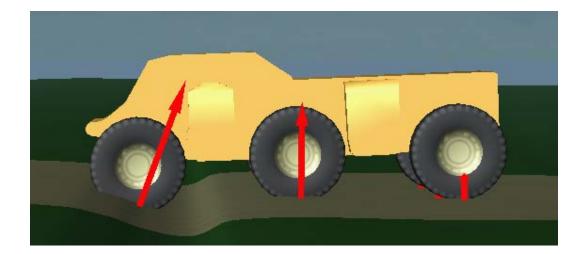
Mechanical Simulation


PBS Example: Static Rollover Threshold

Military Vehicles: Tanks

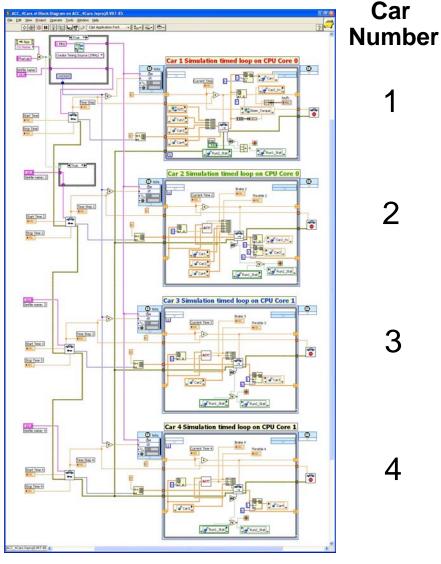
- Tank chassis model developed with Vehicle Sim
 - Chassis, sprockets and idler wheels
- Track model added by Helmut Schmidt University
- Result: Tank mobility model

Military Vehicles: Stryker


- Stryker has limited turning radius because of its size and front wheel steer angles (8x8 with 4-wheel steer)
- Could differential braking could improve performance?
- Easily demonstrated with TruckSim model

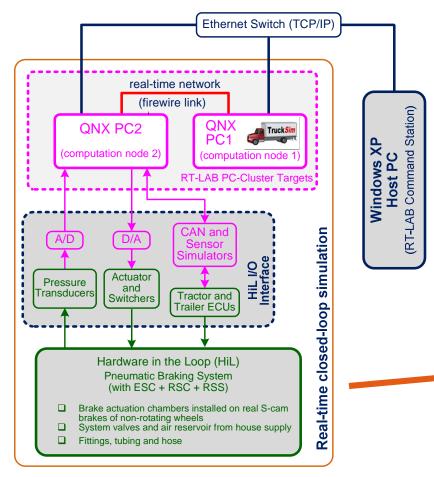
Military Vehicles: Crusher

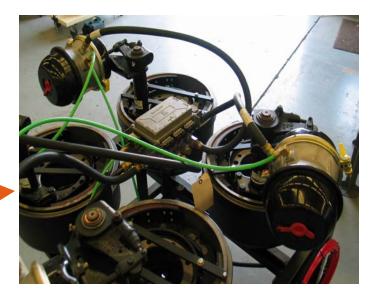
- Crusher is a high-mobility autonomous vehicle
- Can design changes be evaluated using simulation?
- Crusher is modeled in Truck Sim



00

Research: Adaptive Cruise Control


- Vehicles with Adaptive Cruise Control must be tested for compatibility, but how?
- Multiple vehicles can run in LabView
 - Full-fidelity CarSim models
 - Four vehicles per CPU
 - Eight vehicles on dual-core CPU
- First vehicle is driven by CarSim user in a Driving Simulator
- Following vehicles are controlled by adaptive cruise control



Research: Truck ESC Evaluation

- How do you evaluate performance of truck ESC, RSC, RSS, ABS?
- University of Michigan uses TruckSim in their HIL laboratory

- Truck hardware is installed in the laboratory
- Simulation evaluates performance over a broad range of real-world conditions

Accident Reconstruction

- Applications of CarSim and TruckSim in accident reconstruction:
 1) Simulating the vehicle motions in an accident (difficult)
 2) Illustrating the accident with an animation (much easier)
- Using the animator to illustrate an expert's opinion
- Examples:

Conclusion

- There are many potential applications for vehicle dynamics simulation tools outside of the traditional vehicle community
- Stop by Mechanical Simulation booth to discuss more applications

Stand 3100, Hall 3