
1

Michael Sayers, Ph.D.
CEO and Chief Technology Officer

Extending and customizing CarSim
math models at runtime

 Core model capabilities
 Extending the models
 Runtime VS commands
 Q & A

Engineering plotter

Surface animator

Vehicle math model solversGraphical database

2

The Parts of CarSim
 Use the database to define vehicles,

conditions, and test results
 One click to make a run
 One click to view animation
 One click to view engineering plots
 Export results to other software

Timeline
UMTRI: University of Michigan
Transportation Research Institute
(formerly HSRI)
•1960’s Vehicle dynamics research
•1970’s Early vehicle and tire models
•1989 Automated modeling (AutoSim)
•1990 Simulation GUI
•1995 TruckSim

Mechanical Simulation Corporation
•1996 CarSim
•1998 Real-time Hardware in the loop
•1999 Simulink support
•2002 High-quality animation
•2005 BikeSim, event programming
•2007 VS commands, VS API

3

• 30+ Car and Truck OEMs
• 60+ Tier 1 and Tier 2 Suppliers
• 120+ Universities, Testing and Research Organizations

Worldwide Customers

4

 Simulink can access CarSim math models through S-Function blocks
 Use Simulink from CarSim
 Use CarSim from Simulink

Run CarSim with Simulink 5

LabView RT

 Host Machine w. Windows
 Database
 Animator & Plotter
 User Interface

 Target Machine w. RT OS
 CarSim math models
 Hardware-in-the-loop interface
 Works with most RT systems

CarSim RT for Hardware in the Loop

Choose RT Platform

Host PC
Windows

RT Lab

dSPACE

6

7

Driving Simulators
 “Feel” design and/or HIL
 Reproduce established tests
 CarSim used “as is” for 70+

driving simulators
 RT animation for engineers
 CarSim RT used for huge two-

track Toyota Simulator

Component
Testing

Test with Hardware
in the Loop

CarSim and
Product Life
Management

Vehicle
Testing

Proving Ground
Optimization, Driving
Simulators

Product
Launch Marketing Tools

System
Definition

Simulate with
CarSim

Vehicle
Definition

Vehicle Requirements,
Capabilities,
Capacities

Controls
Development

Test with Software
in the Loop

Aftermarket

• Compress design cycles

• Optimize physical testing

• Collaboration

8

9

Many Applications
 1000+ CarSim licenses (many on networks)

 Vehicle design and testing at OEM and tier-1 (mechanical
engineers)

 Controller design and testing (electrical engineers)
 Evaluation by specialists (brakes, powertrain, tires, steering)
 Testing of aftermarket vehicle modifications
 Research by scientists
 Education (vehicle dynamics, control)
 Driver training and human factors research (driving simulators)
 Road design
 Marketing
 Accident analysis and reconstruction
 ...

 A single vehicle model is not perfect for everyone

10

A CarSim vehicle model
 Core model for vehicle dynamics

 Nonlinear 3D kinematics and dynamics from symbolic multibody
program

 Built-in models for standard systems (brakes, powertrain, tires, steering)
 Comprehensive 3D road model
 Closed-loop controls for basic driver actions

Machine-
generated

C Code

3D multibody vehicle
description (Lisp)

VehicleSim library
routines (API, commands,

file i/o, etc.) CarSim

Hand-written C code for
vehicle systems and

components

VehicleSim Lisp
(old name: AutoSim) C compiler

CarSim
Solver DLL

Developers
(Mechanical
Simulation)

Users

VehicleSim Lisp Multibody
Code Generator

11

Example: 3D suspension/
steering kinematics

 Extensive and fully nonlinear
 Highly optimized (but lengthy!)
 Much faster than real-time

Runtime Table Options
 Table interpolation determined at run time
 Most tables have offset and gain options

 Support sensitivity, DOE studies
 Define customized control functions

12

13

A CarSim vehicle model
 Core model for vehicle dynamics

 Nonlinear 3D kinematics and dynamics from symbolic multibody
program

 Built-in models for standard systems (brakes, powertrain, tires, steering)
 Comprehensive 3D road model
 Closed-loop controls for basic driver actions

 The core vehicle model can be a block in Simulink, LabView,
ETAS ASCET

Full Import Options
 Combine with “native variable” by add, replace, multiply
 Machine-generated documentation (Excel)

14

15

A CarSim vehicle model
 Core model for vehicle dynamics

 Nonlinear 3D kinematics and dynamics from symbolic multibody
program

 Built-in models for standard systems (brakes, powertrain, tires, steering)
 Comprehensive 3D road model
 Closed-loop controls for basic driver actions

 The core vehicle model can be a block in Simulink, LabView,
ETAS ASCET

 The model can be controlled by other software using the
VehicleSim API

16

VehicleSim API
 One set of DLLs

 VehicleSim
Browser (SGUI)

 Simulink
 LabView
 ASCET
 Custom EXE
 More…

 VS API provides
3D road, tire

 Extend with
custom C/C++

17

 Load DLL
 Start (read data)
 Loop (integrate)
 Terminate

VS API: You control the simulation

18

Custom Code
 External variables
 Install in model
 External equations

19

A CarSim vehicle model
 Core model for vehicle dynamics

 Nonlinear 3D kinematics and dynamics from symbolic multibody
program

 Built-in models for standard systems (brakes, powertrain, tires, steering)
 Comprehensive 3D road model
 Closed-loop controls for basic driver actions

 The core vehicle model can be a block in Simulink, LabView,
ETAS ASCET

 The model can be controlled by other software using the
VehicleSim API

 The core model can be extended at runtime with VS
commands
 Use events for changing controls or vehicle properties
 Add new variables and equations (algebraic and differential)
 Redefine forces, moments, and controls in the core model

VehicleSim Commands Only a few commands
 Yet, powerful options

20

VehicleSim Math Models: Solver Program Reference Manual

— 21 —

Table 5. VehicleSim Commands.

Command Action

DEFINE_EVENT Define new event.

DEFINE_IMPORT Define a new potential import variable (to pass-through data).

DEFINE_OUTPUT Define a new output variable for export, plotting, and animation.

DEFINE_VARIABLE Define a new variable available to the solver.

DEFINE_UNITS Install new units in the VS solver.

EQ_DIFFERENTIAL Add an equation to calculate the derivative of a new variable.

EQ_END Add an equation that is applied when the run terminates.

EQ_IN Add an equation that is applied at the start of a time step.

EQ_INIT Add an equation applied before initial outputs are calculated.

EQ_INIT2 Add an equation applied after initial outputs are calculated.

EQ_OUT Add an equation that is applied at the end of a time step.

EQ_PRE_INIT Add an equation that is applied just before initialization.

EVENT_SET_GT Define new event (old version, not recommended).

EVENT_SET_LT Define new event (old version, not recommended).

REDEFINE_UNITS Redefine existing units in the VS solver.

RESET_EVENTS Clear any pending events.

RESET_EXPORTS Disable all export variables.

RESET_IMPORTS Disable all import variables.

RESET_LIVE_ANI Disable all live animator broadcast variables.

SET_OUTPUT_COMPONENT Set the 32-character component name for a new output variable.

SET_OUTPUT_GENERIC Set the 32-character generic name for a new output variable.

SET_OUTPUT_LONG_NAME Set the 32-character long name for a new output variable.

SET_UNITS Set the units for a variable.

1. If the condition is false, no action is taken.

2. If the condition is true and pathname was not provided, then the run is terminated.

3. If the condition is true and pathname was provided, then the solver removes this event

from the list, immediately loads the specified parsfile, performs the initializations needed

after reading a new parsfile, and continues the run. (See Chapter 6 for more details about

the steps taken here.)

Each output variable can be used in two pending events: one with a ‘<’ comparison, and one with

a ‘>’ comparison. If a new event is installed with the same output variable and comparison

operator as an existing pending event, then the old one is replaced.

If threshold is a number or numerical expression, it is assumed to be in the current user units

associated with variable. If a threshold is defined with a symbol or algebraic expression, the

expression is assumed to be in internal dynamical units.

Note The variable used to define an event must be an output variable. The

expression used to define the threshold can include almost any variable

 Add 4 equations
 Enable 4 imports
 Use existing reference points and forces (7,8,9,10)
 Add 1 variable (parameter) K_RIG
 Define new units: N/mm (gain = 0.001)

21VS Commands Example

Outrigger Example

22

ESC Test: FMVSS 126
• Run tests to find steer for Ay =

±0.3 g
• Run series of “sine with dwell

tests”
• Compare yaw rate at two times to

peak yaw rate
• Check lateral position
• Test until steer > 270°

No

No FAIL

No

PASSYes

Yes

Gain = 1.0

Gain = Gain + 0.5
V = 82 km/h

driver model = on
Speed control = off

Initialize vehicle position

When V ≤ 80:
Initialize peak yaw rate

Initialize YCG
Initialize event clock time

Start Sine with Dwell

When T_Event = 1.07:
Is Gain ≥ 5.0?

Is YCG > 1.83 m?

When T_Event = 2.93 sec:
Is yaw rate < 35% of peak?

Yes

No

Yes

When T_Event = 3.67 sec:
Is yaw rate < 20% of peak?

Yes

Is Gain•A > 270°No

steer angle A for Ay = 0.3 g

VS Commands: Example ESC Test

23

Failure: Yaw rate >
35% peak

VS Commands
extend the model

 Add new variables
 Add equations
 Define events

24

Extend the core
model as needed

25

CarSim Has the Core Vehicle Model

ABS
Controllers ESCTraction

Controllers

Alternate Driver
Models

Alternate
Powertrain

Models

Complex Testing
Sequences

Alternate
Steering
Models

Engine
Controllers

Active
Suspension

Models

Alternate Tire
Models

• VS Commands
• Simulink, LabView,

ASCET

• Custom C
• RT with HIL
• Driving Simulator

Drive Train
Component
Controllers

