TENNECO Our mission is GO."

ACOCAR active suspension

Bert Vandersmissen Vehicle Dynamics Expo Stuttgart, 07/05/2008

Vehicle Dynamics Expo 2008

Introduction

- Tuning of a passive automotive suspension is always a compromise between comfort and road holding performance.
- Semi-active suspensions can break this compromise because they can change their characteristics in real time, but can only dissipate energy.
- Active suspensions offer increased performance since they can add energy to the system and generate suspension movements if necessary.
- This presentation will compare the performance of a passive suspension with that of the controlled semi-active and active ACOCAR (Actively COntrolled CAR) suspension, developed by Tenneco.

Our mission is GO.

3

Acocar system overview

Acocar corner consists of:

- 1 constant flow pump.
- 1 damper/actuator with 2 servo-valves to control its force.
- 1 ultracapacitor to flatten out peak currents.

Active mode: pump flow of 5 l/min in normal operation.
Semi-active mode: pump is switched off.

Our mission is GO.

5

Acocar system packaging options

Lightweight design under development:

- Aluminium valve block & outer tube
- Plastic spring seats and dust cover

4 seperate power packs (1 for each corner), or combine the 2 pumps of 1 axle on 1 electromotor?

System with or without anti-roll bars?

- With anti-roll bars:
 - Mechanical fail-safe for roll stiffness
 - Roll stiffness available in semi-active mode
- Without anti-roll bars:
 - Easier packaging
 - Lower weight

Our mission is GO:

6

ৰ ৰ Previous 🛛 Next 🕨 🕨

Active suspension hardware

- Semi-active force region only in passive quadrants.
- Active region increases with pump flow rate.
- Actuator force independent of velocity.
- All forces can be generated by adjusting the appropriate servo-valve and keeping the other one open.

Our mission is GO.

Vehicle Dynamics Expo 2008

Quarter car test rig

25 kN hydraulic actuator to apply road inputs.
Rear left suspension mounted on a sliding frame.
Sprung mass = 350 kg, unsprung mass = 45 kg.
Excellent repeatability.

10

Vehicle Dynamics Expo 2008

Sensors & real-time control system

- Accelerometers on sprung and unsprung mass.
- Linear displacement sensor to measure relative suspension movement.
- String potentiometer to measure absolute displacement of sprung mass.
- Pc with dSpace 1103 board to control test rig and active suspension and to log measurements.

Our mission is GO.

Vehicle Dynamics Expo 2008

Skyhook quarter car control

- Pure skyhook damping = proportional to the absolute velocity of the sprung mass.
- Damping as if the car was suspended to a fixed point in the sky.
- Additional term is added to provide some passive damping, proportional to relative suspension velocity.

 $f_d = b_g \cdot v_b + r_g \cdot v_r$

Our mission is GO.

Contents

Introduction

- Active suspension hardware
- Quarter car test rig
- Skyhook quarter car control
- Experimental skyhook control results
 - Semi-active performance
 - Active performance
- Conclusion

May 7th, 2008

14

◄ ◄ Previous Next ► ►

Experimental skyhook control results

passive

semi-active

 Sine excitation: 1.5 Hz, 0.015 m

15

Vehicle Dynamics Expo 2008

active

◄ ■ Previous Next ► ►

Experimental skyhook control results

- Body displacement peak to peak reduced from 88.5 mm with passive damper to 30.3 mm (34 %) in semi-active mode and 4.7 mm (5.3 %) in active mode (5 l/min)
- Pump flow rate of 5 l/min is sufficient

Our mission is GO.

16

Vehicle Dynamics Expo 2008

Experimental skyhook control results

passive

semi-active

 Pink noise excitation: f = 1 - 20 Hz, x = +/- 0.025 m, v = +/- 0.7 m/s

17

Vehicle Dynamics Expo 2008

◄ ■ Previous Next ► ►

Semi-active performance

- Acceleration (measure for comfort) vs. tyre force variation (measure for handling & safety).
- Semi-active skyhook control reduces body acceleration to <u>85 %</u> of the level obtained with the passive reference damper.
- Also tyre force variation is reduced to <u>70 %</u>.

Our mission is GO.

18

Vehicle Dynamics Expo 2008

Active performance

- Improved performance for comfort in active mode: reduction of acceleration to <u>80 %</u> of passive level with pump flow rate of 5 l/min.
- Higher pump flow rate (10 l/min) reduces body acceleration even further on rough road profiles: reduction to <u>62 %</u> of passive level!
- Performance for handling comparable to semi-active mode:

reduction of tyre force variation to <u>70 %</u> of passive level.

Our mission is GO.

19

Vehicle Dynamics Expo 2008

ACOCAR power consumption

Full semi-active function possible with pump off

Pump flow rate of 5 l/min

- In soft:
 60 W (hydr.) avg. / corner
 110 W (elec.) avg. / corner
 (potential to go lower with additional short-cut valve)
- On worse road profile or in extreme handling conditions: max. avg. 130 W (hydr.) / corner max. avg. 240 W (elec.) / corner

Pump flow rate of 10 l/min

 Worst case: max. avg. 420 W (hydr.) / corner max. avg. 760 W (elec.) / corner

Our mission is GO.

21

Acocar Performance: Ultimate comfort & safety

		Sine 1.5 Hz, 15 mm	
		Body displacement peak to peak [mm]	
Passive damper		88.5 (100 %)	
Semi-active	Optimal comfort setting	30.3 (34 %)	
Active (5 l/min)	Optimal comfort setting	4.7 (5.3 %)	
		Sine 15 Hz, 3 mm	
		Tyre force variation peak to peak [N]	
Passive damper		4360 (100 %)	
Semi-active	Optimal handling setting	1380 (32 %)	
Active (5 l/min)	Optimal handling setting	1350 (31 %)	
		Random bad road	
		Body acceleration RMS [m/s²]	Normalized tyre force variation RMS
Passive damper		1.00 (100 %)	0.159 (100 %)
Semi-active	Optimal comfort setting	0.85 (85 %)	0.131 (82 %)
	Optimal handling setting	1.18 (118 %)	0.111 (70 %)
Active (5 l/min)	Optimal comfort setting	0.80 (80 %)	0.133 (84 %)
	Optimal handling setting	1.05 (105 %)	0.111 (70 %)
Active (10 l/min)	Optimal comfort setting	0.62 (62 %)	0.183 (114 %)
	Optimal handling setting	1.22 (122 %)	0.112 (70 %)

Feasibility proven on 1/4 car Ability to control driver inputs: body displacement reduced to <u>5 %</u> on sine → elimination of body roll & pitch Ability to control road inputs: body acceleration reduced to 62 % of passive level on rough road

Our mission is GO.

23

Previous

Acocar Performance: Ultimate comfort & safety

 Working on production intended design with integrated pump
 Starting to build prototype car
 Target EU platforms (SOP 2012-) : top limousines and performance cars

Our mission is GO.

Vehicle Dynamics Expo 2008

Previous